These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 23005471)

  • 1. Intrinsic mean-square displacements in proteins.
    Vural D; Glyde HR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011926. PubMed ID: 23005471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-time mean-square displacements in proteins.
    Vural D; Hong L; Smith JC; Glyde HR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052706. PubMed ID: 24329295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mean square displacements from elastic incoherent neutron scattering evaluated by spectrometers working with different energy resolution on dry and hydrated (H2O and D2O) lysozyme.
    Magazù S; Migliardo F; Benedetto A
    J Phys Chem B; 2010 Jul; 114(28):9268-74. PubMed ID: 20575549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein dynamics in solution and powder measured by incoherent elastic neutron scattering: the influence of Q-range and energy resolution.
    Gabel F
    Eur Biophys J; 2005 Feb; 34(1):1-12. PubMed ID: 15378211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments.
    Doster W; Nakagawa H; Appavou MS
    J Chem Phys; 2013 Jul; 139(4):045105. PubMed ID: 23902030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of conformational states on protein dynamical transition.
    Nakagawa H; Kamikubo H; Kataoka M
    Biochim Biophys Acta; 2010 Jan; 1804(1):27-33. PubMed ID: 19595799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change of caged dynamics at T(g) in hydrated proteins: trend of mean squared displacements after correcting for the methyl-group rotation contribution.
    Ngai KL; Capaccioli S; Paciaroni A
    J Chem Phys; 2013 Jun; 138(23):235102. PubMed ID: 23802985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-water displacement distributions.
    Doster W; Settles M
    Biochim Biophys Acta; 2005 Jun; 1749(2):173-86. PubMed ID: 15893505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteins as fractals: role of the hydrodynamic interaction.
    Granek R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):020902. PubMed ID: 21405811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Dynamical Heterogeneity from Dynamic Neutron Scattering of Proteins.
    Vural D; Smith JC; Glyde HR
    Biophys J; 2018 May; 114(10):2397-2407. PubMed ID: 29580551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein dynamics as seen by (quasi) elastic neutron scattering.
    Magazù S; Mezei F; Falus P; Farago B; Mamontov E; Russina M; Migliardo F
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3504-3512. PubMed ID: 27476795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration effect on low-frequency protein dynamics observed in simulated neutron scattering spectra.
    Joti Y; Nakagawa H; Kataoka M; Kitao A
    Biophys J; 2008 Jun; 94(11):4435-43. PubMed ID: 18310244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy resolution and dynamical heterogeneity effects on elastic incoherent neutron scattering from molecular systems.
    Becker T; Smith JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021904. PubMed ID: 12636712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein structure and hydration probed by SANS and osmotic stress.
    Stanley C; Krueger S; Parsegian VA; Rau DC
    Biophys J; 2008 Apr; 94(7):2777-89. PubMed ID: 18178651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further evidence that interfacial water is the main "driving force" of protein dynamics: a neutron scattering study on perdeuterated C-phycocyanin.
    Combet S; Zanotti JM
    Phys Chem Chem Phys; 2012 Apr; 14(14):4927-34. PubMed ID: 22388956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anharmonic behavior in the multisubunit protein apoferritin as revealed by quasi-elastic neutron scattering.
    Telling MT; Neylon C; Kilcoyne SH; Arrighi V
    J Phys Chem B; 2008 Sep; 112(35):10873-8. PubMed ID: 18698713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coincidence of dynamical transitions in a soluble protein and its hydration water: direct measurements by neutron scattering and MD simulations.
    Wood K; Frölich A; Paciaroni A; Moulin M; Härtlein M; Zaccai G; Tobias DJ; Weik M
    J Am Chem Soc; 2008 Apr; 130(14):4586-7. PubMed ID: 18338890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations on a theme by Debye and Waller: from simple crystals to proteins.
    García AE; Krumhansl JA; Frauenfelder H
    Proteins; 1997 Oct; 29(2):153-60. PubMed ID: 9329080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water around thermophilic proteins: the role of charged and apolar atoms.
    Sterpone F; Bertonati C; Briganti G; Melchionna S
    J Phys Condens Matter; 2010 Jul; 22(28):284113. PubMed ID: 21399285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of a dynamic crossover in RNA hydration water which triggers a dynamic transition in the biopolymer.
    Chu XQ; Fratini E; Baglioni P; Faraone A; Chen SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011908. PubMed ID: 18351877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.