These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 23005513)
1. Parameter estimation through ignorance. Du H; Smith LA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016213. PubMed ID: 23005513 [TBL] [Abstract][Full Text] [Related]
2. Quantifying uncertainty in state and parameter estimation. Parlitz U; Schumann-Bischoff J; Luther S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):050902. PubMed ID: 25353733 [TBL] [Abstract][Full Text] [Related]
3. Random parameter-switching synthesis of a class of hyperbolic attractors. Danca MF Chaos; 2008 Sep; 18(3):033111. PubMed ID: 19045449 [TBL] [Abstract][Full Text] [Related]
4. Identification of Neurofuzzy models using GTLS parameter estimation. Jakubek S; Hametner C IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1121-33. PubMed ID: 19336320 [TBL] [Abstract][Full Text] [Related]
5. Parameter estimation of nonlinear dynamical systems based on integrator theory. Peng H; Li L; Yang Y; Wang C Chaos; 2009 Sep; 19(3):033130. PubMed ID: 19792010 [TBL] [Abstract][Full Text] [Related]
6. Parameter estimation and forecasting for multiplicative log-normal cascades. Leövey AE; Lux T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046114. PubMed ID: 22680545 [TBL] [Abstract][Full Text] [Related]
7. A generalized least absolute deviation method for parameter estimation of autoregressive signals. Xia Y; Kamel MS IEEE Trans Neural Netw; 2008 Jan; 19(1):107-18. PubMed ID: 18269942 [TBL] [Abstract][Full Text] [Related]
8. Probabilistic evaluation of time series models: a comparison of several approaches. Bröcker J; Engster D; Parlitz U Chaos; 2009 Dec; 19(4):043130. PubMed ID: 20059226 [TBL] [Abstract][Full Text] [Related]
9. Predictability of extreme events in a nonlinear stochastic-dynamical model. Franzke C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031134. PubMed ID: 22587065 [TBL] [Abstract][Full Text] [Related]
10. Modeling of nonlinear biological phenomena modeled by S-systems. Mansouri MM; Nounou HN; Nounou MN; Datta AA Math Biosci; 2014 Mar; 249():75-91. PubMed ID: 24524881 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear systems identification by combining regression with bootstrap resampling. Kuramae H; Hirata Y; Bruchovsky N; Aihara K; Suzuki H Chaos; 2011 Dec; 21(4):043121. PubMed ID: 22225358 [TBL] [Abstract][Full Text] [Related]
12. On parameter estimation of chaotic systems via symbolic time-series analysis. Piccardi C Chaos; 2006 Dec; 16(4):043115. PubMed ID: 17199393 [TBL] [Abstract][Full Text] [Related]
14. Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study. Roosa K; Luo R; Chowell G Math Biosci Eng; 2019 May; 16(5):4299-4313. PubMed ID: 31499663 [TBL] [Abstract][Full Text] [Related]
15. Relation between optimal nonlinearity and non-Gaussian noise: enhancing a weak signal in a nonlinear system. Ichiki A; Tadokoro Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012124. PubMed ID: 23410300 [TBL] [Abstract][Full Text] [Related]
16. Counting and classifying attractors in high dimensional dynamical systems. Bagley RJ; Glass L J Theor Biol; 1996 Dec; 183(3):269-84. PubMed ID: 9015450 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the nonparametric estimation method in NONMEM VI. Savic RM; Kjellsson MC; Karlsson MO Eur J Pharm Sci; 2009 Apr; 37(1):27-35. PubMed ID: 19159684 [TBL] [Abstract][Full Text] [Related]
18. A model-based initial guess for estimating parameters in systems of ordinary differential equations. Dattner I Biometrics; 2015 Dec; 71(4):1176-84. PubMed ID: 26172865 [TBL] [Abstract][Full Text] [Related]
19. Theoretical and experimental studies of parameter estimation based on chaos feedback synchronization. Zhang Y; Tao C; Jiang JJ Chaos; 2006 Dec; 16(4):043122. PubMed ID: 17199400 [TBL] [Abstract][Full Text] [Related]
20. Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey. Stano P; Lendek Z; Braaksma J; Babuska R; de Keizer C; den Dekker AJ IEEE Trans Cybern; 2013 Dec; 43(6):1607-24. PubMed ID: 23757593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]