These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23005524)

  • 21. A mixed boundary representation to simulate the displacement of a biofluid by a biomaterial in porous media.
    Widmer RP; Ferguson SJ
    J Biomech Eng; 2011 May; 133(5):051007. PubMed ID: 21599098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decay of capillary wave turbulence.
    Deike L; Berhanu M; Falcon E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066311. PubMed ID: 23005210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Breaking of non-Newtonian character in flows through a porous medium.
    Chevalier T; Rodts S; Chateau X; Chevalier C; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023002. PubMed ID: 25353566
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermally activated depinning motion of contact lines in pseudopartial wetting.
    Du L; Bodiguel H; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012402. PubMed ID: 25122310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Approach to universality in axisymmetric bubble pinch-off.
    Gekle S; Snoeijer JH; Lohse D; van der Meer D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036305. PubMed ID: 19905210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of capillary flows with functionally graded porous titanium oxide films fabricated by anodization instability.
    Joung YS; Figliuzzi BM; Buie CR
    J Colloid Interface Sci; 2014 Jun; 423():143-50. PubMed ID: 24703679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack.
    Liu Y; Jiang L; Zhu N; Zhao Y; Zhang Y; Wang D; Yang M; Zhao J; Song Y
    Magn Reson Imaging; 2015 Sep; 33(7):918-26. PubMed ID: 25940392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of level-set method for deposition in three-dimensional reconstructed porous media.
    Vu MT; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053301. PubMed ID: 25353909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effective rheology of bubbles moving in a capillary tube.
    Sinha S; Hansen A; Bedeaux D; Kjelstrup S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):025001. PubMed ID: 23496645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of wettability on two-phase quasi-static displacement: Validation of two pore scale modeling approaches.
    Verma R; Icardi M; Prodanović M
    J Contam Hydrol; 2018 May; 212():115-133. PubMed ID: 29395376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lattice Boltzmann simulations of binary fluid flow through porous media.
    Tölke J; Krafczyk M; Schulz M; Rank E
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):535-45. PubMed ID: 16214693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality.
    George J; Sujith RI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046321. PubMed ID: 19905450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capillary filling under electro-osmotic effects in the presence of electromagneto-hydrodynamic effects.
    Desai N; Ghosh U; Chakraborty S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063017. PubMed ID: 25019889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactive transport in porous media: pore-network model approach compared to pore-scale model.
    Varloteaux C; Vu MT; Békri S; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023010. PubMed ID: 23496613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026302. PubMed ID: 15783414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-scale simulations of concentrated emulsion flows.
    Zinchenko AZ; Davis RH
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):813-45. PubMed ID: 12804217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interface condition for the Darcy velocity at the water-oil flood front in the porous medium.
    Peng X; Liu Y; Liang B; Du Z
    PLoS One; 2017; 12(5):e0177187. PubMed ID: 28542612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Capillary adhesion at the nanometer scale.
    Cheng S; Robbins MO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062402. PubMed ID: 25019789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model.
    Michler C; Cookson AN; Chabiniok R; Hyde E; Lee J; Sinclair M; Sochi T; Goyal A; Vigueras G; Nordsletten DA; Smith NP
    Int J Numer Method Biomed Eng; 2013 Feb; 29(2):217-32. PubMed ID: 23345266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.