These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 23005525)

  • 1. Fluid mechanics in fluids at rest.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016307. PubMed ID: 23005525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the tracer velocity of a fluid continuum equal to its mass velocity?
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061201. PubMed ID: 15697343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013014. PubMed ID: 23410433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical test of bivelocity hydrodynamics for mixtures.
    Brenner H
    J Chem Phys; 2010 Oct; 133(15):154102. PubMed ID: 20969365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lattice kinetic scheme for incompressible viscous flows with heat transfer.
    Inamuro T
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):477-84. PubMed ID: 16210191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comment on "Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua".
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):027001. PubMed ID: 24032976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conduction-only transport phenomena in compressible bivelocity fluids: diffuse interfaces and Korteweg stresses.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043020. PubMed ID: 24827345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nearly incompressible fluids: hydrodynamics and large scale inhomogeneity.
    Hunana P; Zank GP; Shaikh D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026302. PubMed ID: 17025534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation.
    Bleyer J; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropically damped form of artificial compressibility for explicit simulation of incompressible flow.
    Clausen JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013309. PubMed ID: 23410462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breakdown parameter for kinetic modeling of multiscale gas flows.
    Meng J; Dongari N; Reese JM; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063305. PubMed ID: 25019910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-thermophoresis and thermal self-diffusion in liquids and gases.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036325. PubMed ID: 21230189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phoresis in fluids.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066317. PubMed ID: 22304200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic theory of incompressible hydrodynamics.
    Ansumali S; Karlin IV; Ottinger HC
    Phys Rev Lett; 2005 Mar; 94(8):080602. PubMed ID: 15783873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniqueness of Landau-Lifshitz energy frame in relativistic dissipative hydrodynamics.
    Tsumura K; Kunihiro T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053008. PubMed ID: 23767621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H; Valocchi AJ; Zhang Y; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional visualization of air flow in infant incubators using computational fluid mechanics.
    Hasegawa T; Horio H; Okino H; Taylor TW; Yamaguchi T
    Biomed Instrum Technol; 1993; 27(4):311-7. PubMed ID: 8369866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas flow driven by thermal creep in dusty plasma.
    Flanagan TM; Goree J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046402. PubMed ID: 19905456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.