BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 2300554)

  • 1. Higher order structural elements in ribosomal RNAs: pseudo-knots and the use of noncanonical pairs.
    Gutell RR; Woese CR
    Proc Natl Acad Sci U S A; 1990 Jan; 87(2):663-7. PubMed ID: 2300554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence and structural conservation in RNA ribose zippers.
    Tamura M; Holbrook SR
    J Mol Biol; 2002 Jul; 320(3):455-74. PubMed ID: 12096903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective.
    Gutell RR; Larsen N; Woese CR
    Microbiol Rev; 1994 Mar; 58(1):10-26. PubMed ID: 8177168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extension of the graph theoretical approach to predict the secondary structure of large RNAs: the complex of 16S and 23S rRNAs from E. coli as a case study.
    Thanaraj TA; Kolaskar AS; Pandit MW
    Comput Appl Biosci; 1989 Jul; 5(3):211-8. PubMed ID: 2475225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial ribosomal RNA molecules of Aspergillus nidulans.
    Dyson NJ; Brown TA; Waring RB; Davies RW
    Gene; 1989 Jan; 75(1):109-18. PubMed ID: 2656406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization and expression of the 16S, 23S and 5S ribosomal RNA genes from the archaebacterium Thermoplasma acidophilum.
    Ree HK; Zimmermann RA
    Nucleic Acids Res; 1990 Aug; 18(15):4471-8. PubMed ID: 1697064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additional Watson-Crick interactions suggest a structural core in large subunit ribosomal RNA.
    Haselman T; Gutell RR; Jurka J; Fox GE
    J Biomol Struct Dyn; 1989 Aug; 7(1):181-6. PubMed ID: 2684221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compilation of large subunit (23S-like) ribosomal RNA sequences presented in a secondary structure format.
    Gutell RR; Schnare MN; Gray MW
    Nucleic Acids Res; 1990 Apr; 18 Suppl(Suppl):2319-30. PubMed ID: 1692118
    [No Abstract]   [Full Text] [Related]  

  • 9. Secondary structural elements exclusive to the sequences flanking ribosomal RNAs lend support to the monophyletic nature of the archaebacteria.
    Kjems J; Garrett RA
    J Mol Evol; 1990 Jul; 31(1):25-32. PubMed ID: 1696321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequences of the spacer-1, spacer-2 and trailer regions of the rrn operons and secondary structures of precursor 23S rRNAs and precursor 5S rRNAs of slow-growing mycobacteria.
    Ji YE; Kempsell KE; Colston MJ; Cox RA
    Microbiology (Reading); 1994 Jul; 140 ( Pt 7)():1763-73. PubMed ID: 7521248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens.
    Pernodet JL; Boccard F; Alegre MT; Gagnat J; Guérineau M
    Gene; 1989 Jun; 79(1):33-46. PubMed ID: 2777089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of translation based on intersubunit complementarities of ribosomal RNAs and tRNAs.
    Nagano K; Nagano N
    J Theor Biol; 2007 Apr; 245(4):644-68. PubMed ID: 17196221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs.
    Eckenrode VK; Arnold J; Meagher RB
    J Mol Evol; 1984-1985; 21(3):259-69. PubMed ID: 6100313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing.
    Tang TH; Rozhdestvensky TS; d'Orval BC; Bortolin ML; Huber H; Charpentier B; Branlant C; Bachellerie JP; Brosius J; Hüttenhofer A
    Nucleic Acids Res; 2002 Feb; 30(4):921-30. PubMed ID: 11842103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive analysis of the pre-ribosomal RNA maturation pathway in a methanoarchaeon exposes the conserved circularization and linearization mode in archaea.
    Qi L; Li J; Jia J; Yue L; Dong X
    RNA Biol; 2020 Oct; 17(10):1427-1441. PubMed ID: 32449429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural constraints identified with covariation analysis in ribosomal RNA.
    Shang L; Xu W; Ozer S; Gutell RR
    PLoS One; 2012; 7(6):e39383. PubMed ID: 22724009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 23S ribosomal RNA higher-order structure of Pseudomonas cepacia and other prokaryotes.
    Höpfl P; Ludwig W; Schleifer KH; Larsen N
    Eur J Biochem; 1989 Nov; 185(2):355-64. PubMed ID: 2583187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mitochondrial ribosomal RNA genes of the nematodes Caenorhabditis elegans and Ascaris suum: consensus secondary-structure models and conserved nucleotide sets for phylogenetic analysis.
    Okimoto R; Macfarlane JL; Wolstenholme DR
    J Mol Evol; 1994 Dec; 39(6):598-613. PubMed ID: 7528811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequences around the fragmentation sites of the large subunit ribosomal RNA in the family Rhizobiaceae. 23S-like rRNAs in Rhizobiaceae.
    Selenska-Pobell S; Döring H
    Antonie Van Leeuwenhoek; 1998 Jan; 73(1):55-67. PubMed ID: 9602279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensor decomposition reveals concurrent evolutionary convergences and divergences and correlations with structural motifs in ribosomal RNA.
    Muralidhara C; Gross AM; Gutell RR; Alter O
    PLoS One; 2011; 6(4):e18768. PubMed ID: 21625625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.