BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 23005606)

  • 1. Quantum coherence and sensitivity of avian magnetoreception.
    Bandyopadhyay JN; Paterek T; Kaszlikowski D
    Phys Rev Lett; 2012 Sep; 109(11):110502. PubMed ID: 23005606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entanglement and sources of magnetic anisotropy in radical pair-based avian magnetoreceptors.
    Hogben HJ; Biskup T; Hore PJ
    Phys Rev Lett; 2012 Nov; 109(22):220501. PubMed ID: 23368109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum coherence and entanglement in the avian compass.
    Pauls JA; Zhang Y; Berman GP; Kais S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062704. PubMed ID: 23848712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Quantum coherence and sensitivity of avian magnetoreception".
    Gauger EM; Benjamin SC
    Phys Rev Lett; 2013 Apr; 110(17):178901. PubMed ID: 23679789
    [No Abstract]   [Full Text] [Related]  

  • 5. A model for photoreceptor-based magnetoreception in birds.
    Ritz T; Adem S; Schulten K
    Biophys J; 2000 Feb; 78(2):707-18. PubMed ID: 10653784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dynamics of the avian compass.
    Walters ZB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042710. PubMed ID: 25375526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The quantum needle of the avian magnetic compass.
    Hiscock HG; Worster S; Kattnig DR; Steers C; Jin Y; Manolopoulos DE; Mouritsen H; Hore PJ
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4634-9. PubMed ID: 27044102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes.
    Lau JC; Rodgers CT; Hore PJ
    J R Soc Interface; 2012 Dec; 9(77):3329-37. PubMed ID: 22977104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance effects indicate a radical-pair mechanism for avian magnetic compass.
    Ritz T; Thalau P; Phillips JB; Wiltschko R; Wiltschko W
    Nature; 2004 May; 429(6988):177-80. PubMed ID: 15141211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4.
    Günther A; Einwich A; Sjulstok E; Feederle R; Bolte P; Koch KW; Solov'yov IA; Mouritsen H
    Curr Biol; 2018 Jan; 28(2):211-223.e4. PubMed ID: 29307554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic compass of birds is based on a molecule with optimal directional sensitivity.
    Ritz T; Wiltschko R; Hore PJ; Rodgers CT; Stapput K; Thalau P; Timmel CR; Wiltschko W
    Biophys J; 2009 Apr; 96(8):3451-7. PubMed ID: 19383488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two different types of light-dependent responses to magnetic fields in birds.
    Wiltschko R; Ritz T; Stapput K; Thalau P; Wiltschko W
    Curr Biol; 2005 Aug; 15(16):1518-23. PubMed ID: 16111946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle.
    Wiltschko R; Gehring D; Denzau S; Nießner C; Wiltschko W
    J Exp Biol; 2014 Dec; 217(Pt 23):4225-8. PubMed ID: 25472973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-dependent magnetoreception: orientation behaviour of migratory birds under dim red light.
    Wiltschko R; Munro U; Ford H; Stapput K; Wiltschko W
    J Exp Biol; 2008 Oct; 211(Pt 20):3344-50. PubMed ID: 18840669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity and entanglement in the avian chemical compass.
    Zhang Y; Berman GP; Kais S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042707. PubMed ID: 25375523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptochrome expression in the eye of migratory birds depends on their migratory status.
    Fusani L; Bertolucci C; Frigato E; Foà A
    J Exp Biol; 2014 Mar; 217(Pt 6):918-23. PubMed ID: 24622895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband 75-85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor.
    Leberecht B; Kobylkov D; Karwinkel T; Döge S; Burnus L; Wong SY; Apte S; Haase K; Musielak I; Chetverikova R; Dautaj G; Bassetto M; Winklhofer M; Hore PJ; Mouritsen H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Jan; 208(1):97-106. PubMed ID: 35019998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Migratory birds use head scans to detect the direction of the earth's magnetic field.
    Mouritsen H; Feenders G; Liedvogel M; Kropp W
    Curr Biol; 2004 Nov; 14(21):1946-9. PubMed ID: 15530397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds.
    Mouritsen H; Hore PJ
    Curr Opin Neurobiol; 2012 Apr; 22(2):343-52. PubMed ID: 22465538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quantum Zeno effect immunizes the avian compass against the deleterious effects of exchange and dipolar interactions.
    Dellis AT; Kominis IK
    Biosystems; 2012 Mar; 107(3):153-7. PubMed ID: 22142839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.