These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 23005630)

  • 1. Nanocavity linewidth narrowing and group delay enhancement by slow light propagation and nonlinear effects.
    Grinberg P; Bencheikh K; Brunstein M; Yacomotti AM; Dumeige Y; Sagnes I; Raineri F; Bigot L; Levenson JA
    Phys Rev Lett; 2012 Sep; 109(11):113903. PubMed ID: 23005630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of a nano cavity lifetime by induced slow light and nonlinear dispersions.
    Grinberg P; Bencheikh K; Brunstein M; Yacomotti AM; Dumeige Y; Sagnes I; Raineri F; Bigot L; Levenson JA
    Opt Express; 2012 Nov; 20(24):27403-10. PubMed ID: 23187597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrow linewidth operation of buried-heterostructure photonic crystal nanolaser.
    Kim J; Shinya A; Nozaki K; Taniyama H; Chen CH; Sato T; Matsuo S; Notomi M
    Opt Express; 2012 May; 20(11):11643-51. PubMed ID: 22714150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Q photonic nanocavity in a two-dimensional photonic crystal.
    Akahane Y; Asano T; Song BS; Noda S
    Nature; 2003 Oct; 425(6961):944-7. PubMed ID: 14586465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency self-induced oscillations in a silicon nanocavity.
    Cazier N; Checoury X; Haret LD; Boucaud P
    Opt Express; 2013 Jun; 21(11):13626-38. PubMed ID: 23736615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral engineering of slow light, cavity line narrowing, and pulse compression.
    Sabooni M; Li Q; Rippe L; Mohan RK; Kröll S
    Phys Rev Lett; 2013 Nov; 111(18):183602. PubMed ID: 24237519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity.
    Chen W; Roelli P; Hu H; Verlekar S; Amirtharaj SP; Barreda AI; Kippenberg TJ; Kovylina M; Verhagen E; Martínez A; Galland C
    Science; 2021 Dec; 374(6572):1264-1267. PubMed ID: 34855500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.
    Finlayson CE; Cattaneo F; Perney NM; Baumberg JJ; Netti MC; Zoorob ME; Charlton MD; Parker GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016619. PubMed ID: 16486307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures.
    Mingaleev SF; Miroshnichenko AE; Kivshar YS; Busch K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046603. PubMed ID: 17155188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides.
    Ustün K; Kurt H
    Opt Express; 2010 Sep; 18(20):21155-61. PubMed ID: 20941012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-component cavity based on a regular photonic crystal nanobeam.
    Serafimovich PG; Kazanskiy NL; Khonina SN
    Appl Opt; 2013 Aug; 52(23):5830-4. PubMed ID: 23938438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform.
    Gong Y; Makarova M; Yerci S; Li R; Stevens MJ; Baek B; Nam SW; Hadfield RH; Dorenbos SN; Zwiller V; Vuckovic J; Dal Negro L
    Opt Express; 2010 Feb; 18(3):2601-12. PubMed ID: 20174089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric out-of-plane power distribution in a two-dimensional photonic crystal nanocavity.
    Ota Y; Iwamoto S; Arakawa Y
    Opt Lett; 2015 Jul; 40(14):3372-5. PubMed ID: 26176472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disorder-induced coherent scattering in slow-light photonic crystal waveguides.
    Patterson M; Hughes S; Combrié S; Tran NV; De Rossi A; Gabet R; Jaouën Y
    Phys Rev Lett; 2009 Jun; 102(25):253903. PubMed ID: 19659077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides.
    Chen T; Sun J; Li L
    Opt Express; 2012 Aug; 20(18):20043-58. PubMed ID: 23037057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays.
    Matsuda N; Kuramochi E; Takesue H; Notomi M
    Opt Lett; 2014 Apr; 39(8):2290-3. PubMed ID: 24978975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguides.
    Kondo K; Shinkawa M; Hamachi Y; Saito Y; Arita Y; Baba T
    Phys Rev Lett; 2013 Feb; 110(5):053902. PubMed ID: 23414021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process.
    Shinkawa M; Ishikura N; Hama Y; Suzuki K; Baba T
    Opt Express; 2011 Oct; 19(22):22208-18. PubMed ID: 22109063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting.
    Scalora M; Mattiucci N; D'Aguanno G; Larciprete M; Bloemer MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016603. PubMed ID: 16486291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.