These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23005754)

  • 1. Dynamics of the wet granular Leidenfrost phenomenon.
    Roeller K; Herminghaus S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021301. PubMed ID: 23005754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Leidenfrost states as a monodisperse granular clock.
    Liu R; Yang M; Chen K; Hou M; To K
    Phys Rev E; 2016 Aug; 94(2-1):020901. PubMed ID: 27627232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. van der Waals-like phase-separation instability of a driven granular gas in three dimensions.
    Liu R; Li Y; Hou M; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061304. PubMed ID: 17677252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Onset of convection in strongly shaken granular matter.
    Eshuis P; van der Meer D; Alam M; van Gerner HJ; van der Weele K; Lohse D
    Phys Rev Lett; 2010 Jan; 104(3):038001. PubMed ID: 20366684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity at the high-density limit and the levitating granular cluster.
    Khain E
    Phys Rev E; 2018 Jul; 98(1-1):012903. PubMed ID: 30110857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase separation of a driven granular gas in annular geometry.
    Díez-Minguito M; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011304. PubMed ID: 17358142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatically driven granular media: phase transitions and coarsening.
    Aranson IS; Blair D; Kalatsky VA; Crabtree GW; Kwok W; Vinokur VM; Welp U
    Phys Rev Lett; 2000 Apr; 84(15):3306-9. PubMed ID: 11019076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamics of Leidenfrost droplets in one-component fluids.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043013. PubMed ID: 23679519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns in flowing sand: understanding the physics of granular flow.
    Börzsönyi T; Ecke RE; McElwaine JN
    Phys Rev Lett; 2009 Oct; 103(17):178302. PubMed ID: 19905786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Granular Leidenfrost effect in vibrated beds with bumpy surfaces.
    Lim EW
    Eur Phys J E Soft Matter; 2010 Aug; 32(4):365-75. PubMed ID: 20820844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant fluctuations at a granular phase separation threshold.
    Meerson B; Pöschel T; Sasorov PV; Schwager T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021302. PubMed ID: 14995436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature oscillations in a compartmentalized bidisperse granular gas.
    Hou M; Tu H; Liu R; Li Y; Lu K; Lai PY; Chan CK
    Phys Rev Lett; 2008 Feb; 100(6):068001. PubMed ID: 18352518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granular Rayleigh-Taylor instability: experiments and simulations.
    Vinningland JL; Johnsen Ø; Flekkøy EG; Toussaint R; Måløy KJ
    Phys Rev Lett; 2007 Jul; 99(4):048001. PubMed ID: 17678407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rayleigh-Bénard convection with rotation at small Prandtl numbers.
    Bajaj KM; Ahlers G; Pesch W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056309. PubMed ID: 12059705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size invariance of the granular Rayleigh-Taylor instability.
    Vinningland JL; Johnsen Ø; Flekkøy EG; Toussaint R; Måløy KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041308. PubMed ID: 20481718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leidenfrost Effect as a Directed Percolation Phase Transition.
    Chantelot P; Lohse D
    Phys Rev Lett; 2021 Sep; 127(12):124502. PubMed ID: 34597096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetry-breaking instability and strongly peaked periodic clustering states in a driven granular gas.
    Livne E; Meerson B; Sasorov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021302. PubMed ID: 11863511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow dynamics and precursors of the glass transition in granular fluids.
    Gholami I; Fiege A; Zippelius A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031305. PubMed ID: 22060359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillating and star-shaped drops levitated by an airflow.
    Bouwhuis W; Winkels KG; Peters IR; Brunet P; van der Meer D; Snoeijer JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023017. PubMed ID: 24032934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise induces rare events in granular media.
    Khain E; Sander LM
    Phys Rev E; 2016 Sep; 94(3-1):032905. PubMed ID: 27739833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.