These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23005759)

  • 1. First-principles constitutive equation for suspension rheology.
    Brader JM; Cates ME; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021403. PubMed ID: 23005759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles constitutive equation for suspension rheology.
    Brader JM; Cates ME; Fuchs M
    Phys Rev Lett; 2008 Sep; 101(13):138301. PubMed ID: 18851498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dense colloidal suspensions under time-dependent shear.
    Brader JM; Voigtmann T; Cates ME; Fuchs M
    Phys Rev Lett; 2007 Feb; 98(5):058301. PubMed ID: 17358908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.
    Brader JM; Siebenbürger M; Ballauff M; Reinheimer K; Wilhelm M; Frey SJ; Weysser F; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061401. PubMed ID: 21230671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of nonlinear rheology and yielding of dense colloidal suspensions.
    Fuchs M; Cates ME
    Phys Rev Lett; 2002 Dec; 89(24):248304. PubMed ID: 12484987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient dynamics in dense colloidal suspensions under shear: shear rate dependence.
    Laurati M; Mutch KJ; Koumakis N; Zausch J; Amann CP; Schofield AB; Petekidis G; Brady JF; Horbach J; Fuchs M; Egelhaaf SU
    J Phys Condens Matter; 2012 Nov; 24(46):464104. PubMed ID: 23114203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling.
    Ness C; Sun J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brownian dynamics simulation of orientational behavior, flow-induced structure, and rheological properties of a suspension of oblate spheroid particles under simple shear.
    Yamamoto T; Suga T; Mori N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021509. PubMed ID: 16196575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology, microstructure and migration in brownian colloidal suspensions.
    Pan W; Caswell B; Karniadakis GE
    Langmuir; 2010 Jan; 26(1):133-42. PubMed ID: 20038167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suspensions of repulsive colloidal particles near the glass transition: Time and frequency domain descriptions.
    Roldán-Vargas S; de Vicente J; Barnadas-Rodríguez R; Quesada-Pérez M; Estelrich J; Callejas-Fernández J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021406. PubMed ID: 20866808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational and rotational dynamics of colloidal particles in suspension: effect of shear.
    Hernández-Contreras M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Schematic models for dynamic yielding of sheared colloidal glasses.
    Fuchs M; Cates ME
    Faraday Discuss; 2003; 123():267-86; discussion 303-22, 419-21. PubMed ID: 12638866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercooled liquids under shear: theory and simulation.
    Miyazaki K; Reichman DR; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jul; 70(1 Pt 1):011501. PubMed ID: 15324050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium fluctuation-dissipation relations of interacting Brownian particles driven by shear.
    Krüger M; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011408. PubMed ID: 20365374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive Model for Time-Dependent Flows of Shear-Thickening Suspensions.
    Gillissen JJJ; Ness C; Peterson JD; Wilson HJ; Cates ME
    Phys Rev Lett; 2019 Nov; 123(21):214504. PubMed ID: 31809141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow curves of dense colloidal dispersions: schematic model analysis of the shear-dependent viscosity near the colloidal glass transition.
    Fuchs M; Ballauff M
    J Chem Phys; 2005 Mar; 122(9):094707. PubMed ID: 15836162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology dynamics of aggregating colloidal suspensions.
    Mohtaschemi M; Puisto A; Illa X; Alava MJ
    Soft Matter; 2014 May; 10(17):2971-81. PubMed ID: 24695455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic Theory for the Rheology of Jammed Soft Suspensions.
    Cuny N; Mari R; Bertin E
    Phys Rev Lett; 2021 Nov; 127(21):218003. PubMed ID: 34860106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between particle elasticity, glass fragility, and structural relaxation in dense microgel suspensions.
    Seekell Iii RP; Sarangapani PS; Zhang Z; Zhu Y
    Soft Matter; 2015 Jul; 11(27):5485-91. PubMed ID: 26061613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.