BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 23005790)

  • 21. Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis.
    Otto O; Gutsche C; Kremer F; Keyser UF
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023710. PubMed ID: 18315308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct observation of nondiffusive motion of a Brownian particle.
    Lukić B; Jeney S; Tischer C; Kulik AJ; Forró L; Florin EL
    Phys Rev Lett; 2005 Oct; 95(16):160601. PubMed ID: 16241779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere.
    Brans T; Strubbe F; Schreuer C; Vandewiele S; Neyts K; Beunis F
    Electrophoresis; 2015 Sep; 36(17):2102-9. PubMed ID: 25963750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions.
    Híjar H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022139. PubMed ID: 25768490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term influence of fluid inertia on the diffusion of a Brownian particle.
    Pesce G; Volpe G; Volpe G; Sasso A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042309. PubMed ID: 25375496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing Raman tweezers by phase-sensitive detection.
    Rusciano G; De Luca AC; Sasso A; Pesce G
    Anal Chem; 2007 May; 79(10):3708-15. PubMed ID: 17444615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precise control and measurement of solid-liquid interfacial temperature and viscosity using dual-beam femtosecond optical tweezers in the condensed phase.
    Mondal D; Mathur P; Goswami D
    Phys Chem Chem Phys; 2016 Oct; 18(37):25823-30. PubMed ID: 27523570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Particle Classification through the Analysis of the Forward Scattered Signal in Optical Tweezers.
    Carvalho IA; Silva NA; Rosa CC; Coelho LCC; Jorge PAS
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real time characterization of hydrodynamics in optically trapped networks of micro-particles.
    Curran A; Yao AM; Gibson GM; Bowman R; Cooper JM; Padgett ML
    J Biophotonics; 2010 Apr; 3(4):244-51. PubMed ID: 20301124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pushing the limit: investigation of hydrodynamic forces on a trapped particle kicked by a laser pulse.
    Villadsen N; Andreasen DØ; Hagelskjær J; Thøgersen J; Imparato A; Keiding SR
    Opt Express; 2015 May; 23(10):13141-52. PubMed ID: 26074567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Counter-propagating dual-trap optical tweezers based on linear momentum conservation.
    Ribezzi-Crivellari M; Huguet JM; Ritort F
    Rev Sci Instrum; 2013 Apr; 84(4):043104. PubMed ID: 23635178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elastic coefficient of a single polymer chain by using Brownian dynamics analysis.
    Horinaka J; Maniwa T; Oharada K; Takigawa T
    J Chem Phys; 2007 Aug; 127(6):064904. PubMed ID: 17705624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy.
    Gibson GM; Leach J; Keen S; Wright AJ; Padgett MJ
    Opt Express; 2008 Sep; 16(19):14561-70. PubMed ID: 18794991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hot brownian particles and photothermal correlation spectroscopy.
    Radünz R; Rings D; Kroy K; Cichos F
    J Phys Chem A; 2009 Mar; 113(9):1674-7. PubMed ID: 19209897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal motion of a holographically trapped SPM-like probe.
    Simpson SH; Hanna S
    Nanotechnology; 2009 Sep; 20(39):395710. PubMed ID: 19726835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of sub-degree angular fluctuations of the local cell membrane slope using optical tweezers.
    Vaippully R; Ramanujan V; Gopalakrishnan M; Bajpai S; Roy B
    Soft Matter; 2020 Aug; 16(32):7606-7612. PubMed ID: 32724976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.
    Indei T; Schieber JD; Córdoba A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041504. PubMed ID: 22680480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution dual-trap optical tweezers with differential detection: instrument design.
    Bustamante C; Chemla YR; Moffitt JR
    Cold Spring Harb Protoc; 2009 Oct; 2009(10):pdb.ip73. PubMed ID: 20147038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple method to measure and analyze the fluctuations of a small particle in biopolymer solutions.
    Kuroda M; Murayama Y
    Rev Sci Instrum; 2015 Dec; 86(12):125105. PubMed ID: 26724071
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multidepth, multiparticle tracking for active microrheology using a smart camera.
    Silburn SA; Saunter CD; Girkin JM; Love GD
    Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.