These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23005792)

  • 1. Excitation energy transfer modulated by oscillating electronic coupling of a dimeric system embedded in a molecular environment.
    Suzuki Y; Tanaka S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021914. PubMed ID: 23005792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional electronic spectroscopy of molecular aggregates.
    Ginsberg NS; Cheng YC; Fleming GR
    Acc Chem Res; 2009 Sep; 42(9):1352-63. PubMed ID: 19691358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of various optical spectra in the presence of slow excitation energy transfer in dimers and trimers with weak interpigment coupling: FMO as an example.
    Herascu N; Kell A; Acharya K; Jankowiak R; Blankenship RE; Zazubovich V
    J Phys Chem B; 2014 Feb; 118(8):2032-40. PubMed ID: 24506338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stochastic reorganizational bath model for electronic energy transfer.
    Fujita T; Huh J; Aspuru-Guzik A
    J Chem Phys; 2014 Jun; 140(24):244103. PubMed ID: 24985614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-dependent wavelike energy transfer on pigment rings of individual light-harvesting-2 complexes from photosynthetic bacteria.
    Chu QJ; Weng YX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041917. PubMed ID: 20481763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation transfer pathways in excitonic aggregates revealed by the stochastic Schrödinger equation.
    Abramavicius V; Abramavicius D
    J Chem Phys; 2014 Feb; 140(6):065103. PubMed ID: 24527939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.
    Huo P; Coker DF
    J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient estimation of energy transfer efficiency in light-harvesting complexes.
    Shabani A; Mohseni M; Rabitz H; Lloyd S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011915. PubMed ID: 23005460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of the exciton-phonon interactions in the PE545 light-harvesting complex.
    Viani L; Corbella M; Curutchet C; O'Reilly EJ; Olaya-Castro A; Mennucci B
    Phys Chem Chem Phys; 2014 Aug; 16(30):16302-11. PubMed ID: 24978840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer.
    Ishizaki A; Calhoun TR; Schlau-Cohen GS; Fleming GR
    Phys Chem Chem Phys; 2010 Jul; 12(27):7319-37. PubMed ID: 20544102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant coherence in photosynthetic electronic energy transfer by site-dependent pigment-protein interactions.
    Sato Y; Reynolds MF
    J Phys Chem B; 2014 Feb; 118(5):1229-33. PubMed ID: 24401013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence line narrowing and Δ-FLN spectra in the presence of excitation energy transfer between weakly coupled chromophores.
    Zazubovich V
    J Phys Chem B; 2014 Nov; 118(47):13535-43. PubMed ID: 25369116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of site-dependent pigment-protein interactions on excitation energy transfer in photosynthetic light harvesting.
    Rivera E; Montemayor D; Masia M; Coker DF
    J Phys Chem B; 2013 May; 117(18):5510-21. PubMed ID: 23597258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex.
    Yeh SH; Kais S
    J Chem Phys; 2014 Dec; 141(23):234105. PubMed ID: 25527917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the in situ electrochemical oxidation on the pigment-protein arrangement and energy transfer in light-harvesting complex from Rhodobacter sphaeroides 601.
    Liu W; Lu Y; Liu Y; Liu K; Yan Y; Kong J; Xu C; Qian S
    Biochem Biophys Res Commun; 2006 Feb; 340(2):505-11. PubMed ID: 16380087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of thermal excitation in ultrafast energy transfer in chlorosomes revealed by two-dimensional electronic spectroscopy.
    Jun S; Yang C; Kim TW; Isaji M; Tamiaki H; Ihee H; Kim J
    Phys Chem Chem Phys; 2015 Jul; 17(27):17872-9. PubMed ID: 26095203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic coherence and the kinetics of inter-complex energy transfer in light-harvesting systems.
    Huo P; Miller TF
    Phys Chem Chem Phys; 2015 Dec; 17(46):30914-24. PubMed ID: 26073739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems.
    Hyeon-Deuk K; Tanimura Y; Cho M
    J Chem Phys; 2007 Aug; 127(7):075101. PubMed ID: 17718632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variety, the spice of life and essential for robustness in excitation energy transfer in light-harvesting complexes.
    Oh SA; Coker DF; Hutchinson DAW
    Faraday Discuss; 2019 Dec; 221(0):59-76. PubMed ID: 31552998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligomerization state and pigment binding strength of the peridinin-Chl a-protein.
    Jiang J; Zhang H; Lu X; Lu Y; Cuneo MJ; O'Neill HM; Urban V; Lo CS; Blankenship RE
    FEBS Lett; 2015 Sep; 589(19 Pt B):2713-9. PubMed ID: 26241331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.