These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23005820)

  • 1. Modification of the gravity model and application to the metropolitan Seoul subway system.
    Goh S; Lee K; Park JS; Choi MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026102. PubMed ID: 23005820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations].
    Kim KY; Park JB; Kim CN; Lee KJ
    J Prev Med Public Health; 2006 Jul; 39(4):325-30. PubMed ID: 16910306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations.
    Kim KY; Kim YS; Roh YM; Lee CM; Kim CN
    J Hazard Mater; 2008 Jun; 154(1-3):440-3. PubMed ID: 18036738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The modeling of attraction characteristics regarding passenger flow in urban rail transit network based on field theory.
    Li M; Wang Y; Jia L
    PLoS One; 2017; 12(9):e0184131. PubMed ID: 28863175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life Expectancy in Areas around Subway Stations in the Seoul Metropolitan Area in Korea, 2008-2017.
    Kim I; Kang HY; Khang YH
    J Korean Med Sci; 2020 Nov; 35(44):e365. PubMed ID: 33200592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal variation of airborne fungi concentrations and related factors in subway stations in Seoul, Korea.
    Cho JH; Hee Min K; Paik NW
    Int J Hyg Environ Health; 2006 May; 209(3):249-55. PubMed ID: 16410055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of criticality in the transportation passenger flow: scaling and renormalization in the Seoul bus system.
    Goh S; Lee K; Choi MY; Fortin JY
    PLoS One; 2014; 9(3):e89980. PubMed ID: 24599221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentrations and identification of culturable airborne fungi in underground stations of the Seoul metro.
    Hwang SH; Jang S; Park WM; Park JB
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20680-20686. PubMed ID: 27473614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Unequal Effects of Social Distancing Policy on Subway Ridership during the COVID-19 Pandemic in Seoul, South Korea.
    Ha J; Jo S; Nam HK; Cho SI
    J Urban Health; 2022 Feb; 99(1):77-81. PubMed ID: 34973127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Subway Ridership in Response to COVID-19 in Seoul, South Korea: Implications for Social Distancing.
    Park J
    Cureus; 2020 Apr; 12(4):e7668. PubMed ID: 32313784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Examination of Subway Sex Offense Modus Operandi: A Case of Seoul, South Korea.
    Kim T; Paek SY; Lee J
    Int J Environ Res Public Health; 2020 Dec; 17(23):. PubMed ID: 33276618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.
    Jung HJ; Kim B; Malek MA; Koo YS; Jung JH; Son YS; Kim JC; Kim H; Ro CU
    J Hazard Mater; 2012 Apr; 213-214():331-40. PubMed ID: 22381374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial modeling for radon concentrations in subway stations in Seoul, Korea.
    Kim D; Cho S; Mohiuddin H; Shin W; Lee D; Roh Y; Seo S
    Environ Sci Process Impacts; 2022 Jan; 24(1):116-126. PubMed ID: 34932059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effectiveness of platform screen doors for the prevention of subway suicides in South Korea.
    Chung YW; Kang SJ; Matsubayashi T; Sawada Y; Ueda M
    J Affect Disord; 2016 Apr; 194():80-3. PubMed ID: 26803779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting subway passenger flows under different traffic conditions.
    Ling X; Huang Z; Wang C; Zhang F; Wang P
    PLoS One; 2018; 13(8):e0202707. PubMed ID: 30148888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison and Economic Envelope Structure Schemes for Deep Foundation Pit of Subway Stations Based on Fuzzy Logic.
    An P; Liu Z; Jia B; Zhou Q; Meng F; Wang Z
    Comput Intell Neurosci; 2022; 2022():1148856. PubMed ID: 35958765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Station-Level Effects of the COVID-19 Pandemic on Subway Ridership in the Seoul Metropolitan Area.
    Jun MJ; Yun MY
    Transp Res Rec; 2023 Apr; 2677(4):802-812. PubMed ID: 37153174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrochemistry of urban groundwater, Seoul, Korea: the impact of subway tunnels on groundwater quality.
    Chae GT; Yun ST; Choi BY; Yu SY; Jo HY; Mayer B; Kim YJ; Lee JY
    J Contam Hydrol; 2008 Oct; 101(1-4):42-52. PubMed ID: 18725171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radon exposure assessment for underground workers: a case of Seoul Subway Police officers in Korea.
    Song MH; Chang BU; Kim Y; Cho KW
    Radiat Prot Dosimetry; 2011 Nov; 147(3):401-5. PubMed ID: 21242168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A long-time limit for world subway networks.
    Roth C; Kang SM; Batty M; Barthelemy M
    J R Soc Interface; 2012 Oct; 9(75):2540-50. PubMed ID: 22593096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.