These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23005848)

  • 41. Fabrication and analysis of spatially uniform field electrokinetic flow devices: theory and experiment.
    Skulan AJ; Barrett LM; Singh AK; Cummings EB; Fiechtner GJ
    Anal Chem; 2005 Nov; 77(21):6790-7. PubMed ID: 16255575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of pressure-driven air bubble elimination in a microfluidic device.
    Kang JH; Kim YC; Park JK
    Lab Chip; 2008 Jan; 8(1):176-8. PubMed ID: 18094777
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fundamental principles and applications of microfluidic systems.
    Ong SE; Zhang S; Du H; Fu Y
    Front Biosci; 2008 Jan; 13():2757-73. PubMed ID: 17981751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrokinetic pumping and detection of low-volume flows in nanochannels.
    Mela P; Tas NR; Berenschot EJ; van Nieuwkasteele J; van den Berg A
    Electrophoresis; 2004 Nov; 25(21-22):3687-93. PubMed ID: 15565691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electroosmotic flow analysis of a branched U-turn nanofluidic device.
    Parikesit GO; Markesteijn AP; Kutchoukov VG; Piciu O; Bossche A; Westerweel J; Garini Y; Young IT
    Lab Chip; 2005 Oct; 5(10):1067-74. PubMed ID: 16175262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A millisecond micromixer via single-bubble-based acoustic streaming.
    Ahmed D; Mao X; Shi J; Juluri BK; Huang TJ
    Lab Chip; 2009 Sep; 9(18):2738-41. PubMed ID: 19704991
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfabrication of cylindrical microfluidic channel networks for microvascular research.
    Huang Z; Li X; Martins-Green M; Liu Y
    Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A microfluidic bubble perfusion device for brain slice culture.
    Saleheen A; Acharyya D; Prosser RA; Baker CA
    Anal Methods; 2021 Mar; 13(11):1364-1373. PubMed ID: 33644791
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Active control of the depletion boundary layers in microfluidic electrochemical reactors.
    Yoon SK; Fichtl GW; Kenis PJ
    Lab Chip; 2006 Dec; 6(12):1516-24. PubMed ID: 17203155
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation.
    Wu M; Xiao F; Johnson-Paben RM; Retterer ST; Yin X; Neeves KB
    Lab Chip; 2012 Jan; 12(2):253-61. PubMed ID: 22094719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oscillating bubbles: a versatile tool for lab on a chip applications.
    Hashmi A; Yu G; Reilly-Collette M; Heiman G; Xu J
    Lab Chip; 2012 Nov; 12(21):4216-27. PubMed ID: 22864283
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic bubble logic.
    Prakash M; Gershenfeld N
    Science; 2007 Feb; 315(5813):832-5. PubMed ID: 17289994
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles.
    Peyman SA; Abou-Saleh RH; McLaughlan JR; Ingram N; Johnson BR; Critchley K; Freear S; Evans JA; Markham AF; Coletta PL; Evans SD
    Lab Chip; 2012 Nov; 12(21):4544-52. PubMed ID: 22968592
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic platforms for lab-on-a-chip applications.
    Haeberle S; Zengerle R
    Lab Chip; 2007 Sep; 7(9):1094-110. PubMed ID: 17713606
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV
    Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental and numerical studies on standing surface acoustic wave microfluidics.
    Mao Z; Xie Y; Guo F; Ren L; Huang PH; Chen Y; Rufo J; Costanzo F; Huang TJ
    Lab Chip; 2016 Feb; 16(3):515-24. PubMed ID: 26698361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Geometric effects on fluid mixing in passive grooved micromixers.
    Yang JT; Huang KJ; Lin YC
    Lab Chip; 2005 Oct; 5(10):1140-7. PubMed ID: 16175271
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.