These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23005865)

  • 1. Thin-foil expansion into a vacuum with a two-temperature electron distribution function.
    Diaw A; Mora P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026403. PubMed ID: 23005865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rarefaction acceleration and kinetic effects in thin-foil expansion into a vacuum.
    Mora P; Grismayer T
    Phys Rev Lett; 2009 Apr; 102(14):145001. PubMed ID: 19392445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rarefaction shock in plasma with a bi-Maxwellian electron distribution function.
    Diaw A; Mora P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036402. PubMed ID: 22060508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin-foil expansion into a vacuum.
    Mora P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056401. PubMed ID: 16383760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the Weibel instability on the expansion of a plasma slab into a vacuum.
    Thaury C; Mora P; Héron A; Adam JC; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026408. PubMed ID: 20866927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma expansion into vacuum assuming a steplike electron energy distribution.
    Kiefer T; Schlegel T; Kaluza MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043110. PubMed ID: 23679533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
    Graziani FR; Bauer JD; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033104. PubMed ID: 25314544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic Study on Plasma Expansion along a Divergent Magnetic Field.
    Zhang Y; Charles C; Boswell R
    Phys Rev Lett; 2016 Jan; 116(2):025001. PubMed ID: 26824545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron kinetic effects in plasma expansion and ion acceleration.
    Grismayer T; Mora P; Adam JC; Héron A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066407. PubMed ID: 18643383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-generation of megagauss magnetic fields during the expansion of a plasma.
    Thaury C; Mora P; Héron A; Adam JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016408. PubMed ID: 20866748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deleterious effects of nonthermal electrons in shock ignition concept.
    Nicolaï P; Feugeas JL; Touati M; Ribeyre X; Gus'kov S; Tikhonchuk V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033107. PubMed ID: 24730956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron beam driven ion-acoustic solitary waves in plasmas with two kappa-distributed electrons.
    Hatami MM
    Sci Rep; 2023 Sep; 13(1):16363. PubMed ID: 37773531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residual Bernstein-Greene-Kruskal-like waves after one-dimensional electron wave breaking in a cold plasma.
    Verma PS; Sengupta S; Kaw P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016410. PubMed ID: 23005553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic wave breaking limit in a cold electronegative plasma with non-Maxwellian electrons.
    Elkamash IS; Kourakis I
    Sci Rep; 2021 Mar; 11(1):6174. PubMed ID: 33731733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling terahertz emissions from energetic electrons and ions in foil targets irradiated by ultraintense femtosecond laser pulses.
    Denoual E; Bergé L; Davoine X; Gremillet L
    Phys Rev E; 2023 Dec; 108(6-2):065211. PubMed ID: 38243518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multispecies plasma expansion into vacuum: The role of secondary ions and suprathermal electrons.
    Elkamash IS; Kourakis I
    Phys Rev E; 2016 Nov; 94(5-1):053202. PubMed ID: 27967187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-energy proton generation and suppression of transverse proton divergence by localized electrons in a laser-foil interaction.
    Miyazaki S; Kawata S; Sonobe R; Kikuchi T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056403. PubMed ID: 16089656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ponderomotive acceleration of hot electrons in tenuous plasmas.
    Geyko VI; Fraiman GM; Dodin IY; Fisch NJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036404. PubMed ID: 19905227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling hot electrons by wave amplification and decay in compressing plasma.
    Schmit PF; Dodin IY; Fisch NJ
    Phys Rev Lett; 2010 Oct; 105(17):175003. PubMed ID: 21231053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent energetic proton acceleration and scaling laws in ultraintense laser-pulse interactions with thin foils.
    Huang Y; Bi Y; Shi Y; Wang N; Tang X; Gao Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036406. PubMed ID: 19392063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.