These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 23005964)

  • 1. Antiferromagnetism in the Hubbard model on the Bernal-stacked honeycomb bilayer.
    Lang TC; Meng ZY; Scherer MM; Uebelacker S; Assaad FF; Muramatsu A; Honerkamp C; Wessel S
    Phys Rev Lett; 2012 Sep; 109(12):126402. PubMed ID: 23005964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction-Induced Dirac Fermions from Quadratic Band Touching in Bilayer Graphene.
    Pujari S; Lang TC; Murthy G; Kaul RK
    Phys Rev Lett; 2016 Aug; 117(8):086404. PubMed ID: 27588872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superconductivity on the brink of spin-charge order in a doped honeycomb bilayer.
    Vafek O; Murray JM; Cvetkovic V
    Phys Rev Lett; 2014 Apr; 112(14):147002. PubMed ID: 24766005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field-induced chiral d + id superconductivity in AA-stacked bilayer graphene: a quantum Monte Carlo study.
    Fang SC; Zheng XJ; Lin HQ; Huang ZB
    J Phys Condens Matter; 2021 Jan; 33(2):025601. PubMed ID: 32906113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nature of the spin liquid state of the Hubbard model on a honeycomb lattice.
    Clark BK; Abanin DA; Sondhi SL
    Phys Rev Lett; 2011 Aug; 107(8):087204. PubMed ID: 21929202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instabilities of the AA-stacked graphene bilayer.
    Rakhmanov AL; Rozhkov AV; Sboychakov AO; Nori F
    Phys Rev Lett; 2012 Nov; 109(20):206801. PubMed ID: 23215515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral spin density wave order on the frustrated honeycomb and bilayer triangle lattice hubbard model at half-filling.
    Jiang K; Zhang Y; Zhou S; Wang Z
    Phys Rev Lett; 2015 May; 114(21):216402. PubMed ID: 26066448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massive symmetry breaking in LaAlO3/SrTiO3(111) quantum wells: a three-orbital strongly correlated generalization of graphene.
    Doennig D; Pickett WE; Pentcheva R
    Phys Rev Lett; 2013 Sep; 111(12):126804. PubMed ID: 24093290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum spin-valley Hall effect in AB-stacked bilayer silicene.
    Lee KW; Lee CE
    Sci Rep; 2019 Dec; 9(1):19426. PubMed ID: 31857647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Criticality of Antiferromagnetism and Superconductivity with Relativity.
    Liu H; Huffman E; Chandrasekharan S; Kaul RK
    Phys Rev Lett; 2022 Mar; 128(11):117202. PubMed ID: 35363026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of a spin liquid phase in the Hubbard model on the honeycomb lattice.
    Sorella S; Otsuka Y; Yunoki S
    Sci Rep; 2012; 2():992. PubMed ID: 23251778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconventional fermi surface instabilities in the kagome Hubbard model.
    Kiesel ML; Platt C; Thomale R
    Phys Rev Lett; 2013 Mar; 110(12):126405. PubMed ID: 25166827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiferromagnetically ordered Mott insulator and d+id superconductivity in twisted bilayer graphene: a quantum Monte Carlo study.
    Huang T; Zhang L; Ma T
    Sci Bull (Beijing); 2019 Mar; 64(5):310-314. PubMed ID: 36659594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broken-symmetry states in doubly gated suspended bilayer graphene.
    Weitz RT; Allen MT; Feldman BE; Martin J; Yacoby A
    Science; 2010 Nov; 330(6005):812-6. PubMed ID: 20947726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground state phases of the half-filled one-dimensional extended hubbard model.
    Sandvik AW; Balents L; Campbell DK
    Phys Rev Lett; 2004 Jun; 92(23):236401. PubMed ID: 15245176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broken-Symmetry Quantum Hall States in Twisted Bilayer Graphene.
    Kim Y; Park J; Song I; Ok JM; Jo Y; Watanabe K; Taniquchi T; Choi HC; Lee DS; Jung S; Kim JS
    Sci Rep; 2016 Dec; 6():38068. PubMed ID: 27905496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum antiferromagnetism in quasicrystals.
    Wessel S; Jagannathan A; Haas S
    Phys Rev Lett; 2003 May; 90(17):177205. PubMed ID: 12786101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing spontaneous quantum Hall states in bilayer graphene.
    Zhang F; MacDonald AH
    Phys Rev Lett; 2012 May; 108(18):186804. PubMed ID: 22681103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral Spin Density Wave and d+id Superconductivity in the Magic-Angle-Twisted Bilayer Graphene.
    Liu CC; Zhang LD; Chen WQ; Yang F
    Phys Rev Lett; 2018 Nov; 121(21):217001. PubMed ID: 30517799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model.
    Chen CC; Muechler L; Car R; Neupert T; Maciejko J
    Phys Rev Lett; 2016 Aug; 117(9):096405. PubMed ID: 27610869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.