These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 23005966)

  • 1. Dimensional-crossover-driven Mott transition in the frustrated Hubbard model.
    Raczkowski M; Assaad FF
    Phys Rev Lett; 2012 Sep; 109(12):126404. PubMed ID: 23005966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting phase and pairing fluctuations in the half-filled two-dimensional Hubbard model.
    Sentef M; Werner P; Gull E; Kampf AP
    Phys Rev Lett; 2011 Sep; 107(12):126401. PubMed ID: 22026778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation-Driven Lifshitz Transition at the Emergence of the Pseudogap Phase in the Two-Dimensional Hubbard Model.
    Bragança H; Sakai S; Aguiar MCO; Civelli M
    Phys Rev Lett; 2018 Feb; 120(6):067002. PubMed ID: 29481286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong coupling superconductivity, pseudogap, and Mott transition.
    Sordi G; Sémon P; Haule K; Tremblay AM
    Phys Rev Lett; 2012 May; 108(21):216401. PubMed ID: 23003285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical breakup of the fermi surface in a doped Mott insulator.
    Civelli M; Capone M; Kancharla SS; Parcollet O; Kotliar G
    Phys Rev Lett; 2005 Sep; 95(10):106402. PubMed ID: 16196948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mott Quantum Criticality in the Anisotropic 2D Hubbard Model.
    Lenz B; Manmana SR; Pruschke T; Assaad FF; Raczkowski M
    Phys Rev Lett; 2016 Feb; 116(8):086403. PubMed ID: 26967431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakup of the Fermi surface near the mott transition in low-dimensional systems.
    Berthod C; Giamarchi T; Biermann S; Georges A
    Phys Rev Lett; 2006 Sep; 97(13):136401. PubMed ID: 17026055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mott transition in kagomé lattice Hubbard model.
    Ohashi T; Kawakami N; Tsunetsugu H
    Phys Rev Lett; 2006 Aug; 97(6):066401. PubMed ID: 17026182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model.
    Galanakis D; Khatami E; Mikelsons K; Macridin A; Moreno J; Browne DA; Jarrell M
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1941):1670-86. PubMed ID: 21422020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mott gap excitations and resonant inelastic x-ray scattering in doped cuprates.
    Tsutsui K; Tohyama T; Maekawa S
    Phys Rev Lett; 2003 Sep; 91(11):117001. PubMed ID: 14525453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mott transition, antiferromagnetism, and d-wave superconductivity in two-dimensional organic conductors.
    Kyung B; Tremblay AM
    Phys Rev Lett; 2006 Jul; 97(4):046402. PubMed ID: 16907597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cluster dynamical mean field theory of the Mott transition.
    Park H; Haule K; Kotliar G
    Phys Rev Lett; 2008 Oct; 101(18):186403. PubMed ID: 18999845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudogap and antiferromagnetic correlations in the hubbard model.
    Macridin A; Jarrell M; Maier T; Kent PR; D'Azevedo E
    Phys Rev Lett; 2006 Jul; 97(3):036401. PubMed ID: 16907520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconfinement transition and Luttinger to Fermi liquid crossover in quasi-one-dimensional systems.
    Biermann S; Georges A; Lichtenstein A; Giamarchi T
    Phys Rev Lett; 2001 Dec; 87(27 Pt 1):276405. PubMed ID: 11800903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interchain-frustration-induced metallic state in quasi-one-dimensional Mott insulators.
    Tsuchiizu M; Suzumura Y; Bourbonnais C
    Phys Rev Lett; 2007 Sep; 99(12):126404. PubMed ID: 17930530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral spin density wave order on the frustrated honeycomb and bilayer triangle lattice hubbard model at half-filling.
    Jiang K; Zhang Y; Zhou S; Wang Z
    Phys Rev Lett; 2015 May; 114(21):216402. PubMed ID: 26066448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extended Crossover from a Fermi Liquid to a Quasiantiferromagnet in the Half-Filled 2D Hubbard Model.
    Šimkovic F; LeBlanc JPF; Kim AJ; Deng Y; Prokof'ev NV; Svistunov BV; Kozik E
    Phys Rev Lett; 2020 Jan; 124(1):017003. PubMed ID: 31976700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconducting fluctuations in the normal state of the two-dimensional Hubbard model.
    Chen X; LeBlanc JP; Gull E
    Phys Rev Lett; 2015 Sep; 115(11):116402. PubMed ID: 26406843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase diagram of the one-dimensional extended Hubbard model at half filling.
    Tsuchiizu M; Furusaki A
    Phys Rev Lett; 2002 Feb; 88(5):056402. PubMed ID: 11863756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground-state phase diagram of a half-filled one-dimensional extended hubbard model.
    Jeckelmann E
    Phys Rev Lett; 2002 Dec; 89(23):236401. PubMed ID: 12485022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.