These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23005968)

  • 1. Luttinger-liquid universality in the time evolution after an interaction quench.
    Karrasch C; Rentrop J; Schuricht D; Meden V
    Phys Rev Lett; 2012 Sep; 109(12):126406. PubMed ID: 23005968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-dimensional fermions with neither Luttinger-liquid nor Fermi-liquid behavior.
    Rozhkov AV
    Phys Rev Lett; 2014 Mar; 112(10):106403. PubMed ID: 24679312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strongly correlated fermions after a quantum quench.
    Manmana SR; Wessel S; Noack RM; Muramatsu A
    Phys Rev Lett; 2007 May; 98(21):210405. PubMed ID: 17677755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renormalization flow of a weak extended backscattering Hamiltonian in a non-chiral Tomonaga-Luttinger liquid.
    Popoff A; Lebedev AV; Raymond L; Jonckheere T; Rech J; Martin T
    J Phys Condens Matter; 2021 Mar; 33(11):115602. PubMed ID: 33339009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attractive Tomonaga-Luttinger liquid in a quantum spin ladder.
    Jeong M; Mayaffre H; Berthier C; Schmidiger D; Zheludev A; Horvatić M
    Phys Rev Lett; 2013 Sep; 111(10):106404. PubMed ID: 25166688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wilson ratio of fermi gases in one dimension.
    Guan XW; Yin XG; Foerster A; Batchelor MT; Lee CH; Lin HQ
    Phys Rev Lett; 2013 Sep; 111(13):130401. PubMed ID: 24116749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover from adiabatic to sudden interaction quench in a Luttinger liquid.
    Dóra B; Haque M; Zaránd G
    Phys Rev Lett; 2011 Apr; 106(15):156406. PubMed ID: 21568587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral properties of one-dimensional Fermi systems after an interaction quench.
    Kennes DM; Klöckner C; Meden V
    Phys Rev Lett; 2014 Sep; 113(11):116401. PubMed ID: 25259989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of inter-composite-fermion interaction to the edge Tomonaga-Luttinger liquid.
    Mandal SS; Jain JK
    Phys Rev Lett; 2002 Aug; 89(9):096801. PubMed ID: 12190424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Luttinger Liquid State of 1D Dirac Fermions in a Van der Waals System Nb
    Yao Q; Jung H; Kong K; De C; Kim J; Denlinger JD; Yeom HW
    Nano Lett; 2023 Sep; 23(17):7961-7967. PubMed ID: 37624091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition from a Tomonaga-Luttinger liquid to a fermi liquid in potassium-intercalated bundles of single-wall carbon nanotubes.
    Rauf H; Pichler T; Knupfer M; Fink J; Kataura H
    Phys Rev Lett; 2004 Aug; 93(9):096805. PubMed ID: 15447126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal disruption of a Luttinger liquid.
    Cavazos-Cavazos D; Senaratne R; Kafle A; Hulet RG
    Nat Commun; 2023 May; 14(1):3154. PubMed ID: 37258570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Quench in PT-Symmetric Luttinger Liquid.
    Dóra B; Moca CP
    Phys Rev Lett; 2020 Apr; 124(13):136802. PubMed ID: 32302175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tomonaga-Luttinger Liquid Spin Dynamics in the Quasi-One-Dimensional Ising-Like Antiferromagnet BaCo_{2}V_{2}O_{8}.
    Faure Q; Takayoshi S; Simonet V; Grenier B; Månsson M; White JS; Tucker GS; Rüegg C; Lejay P; Giamarchi T; Petit S
    Phys Rev Lett; 2019 Jul; 123(2):027204. PubMed ID: 31386519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tomonaga-Luttinger Liquid in the Topological Edge Channel of Multilayer FeSe.
    Zhang H; Zou Q; Li L
    Nano Lett; 2021 Jul; 21(14):6253-6260. PubMed ID: 34255523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium dynamics of one-dimensional hard-core anyons following a quench: complete relaxation of one-body observables.
    Wright TM; Rigol M; Davis MJ; Kheruntsyan KV
    Phys Rev Lett; 2014 Aug; 113(5):050601. PubMed ID: 25126906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Fluid Coexistence in a Spinless Fermions Chain with Pair Hopping.
    Gotta L; Mazza L; Simon P; Roux G
    Phys Rev Lett; 2021 May; 126(20):206805. PubMed ID: 34110210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures.
    Ishii H; Kataura H; Shiozawa H; Yoshioka H; Otsubo H; Takayama Y; Miyahara T; Suzuki S; Achiba Y; Nakatake M; Narimura T; Higashiguchi M; Shimada K; Namatame H; Taniguchi M
    Nature; 2003 Dec; 426(6966):540-4. PubMed ID: 14654836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin gap and Luttinger liquid description of the NMR relaxation in carbon nanotubes.
    Dóra B; Gulácsi M; Simon F; Kuzmany H
    Phys Rev Lett; 2007 Oct; 99(16):166402. PubMed ID: 17995273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local density of states of the one-dimensional spinless fermion model.
    Jeckelmann E
    J Phys Condens Matter; 2013 Jan; 25(1):014002. PubMed ID: 23221007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.