These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 23006241)

  • 1. Towards increased data transmission rate for a three-class metabolic brain-computer interface based on transcranial Doppler ultrasound.
    Myrden A; Kushki A; Sejdić E; Chau T
    Neurosci Lett; 2012 Oct; 528(2):99-103. PubMed ID: 23006241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An online three-class Transcranial Doppler ultrasound brain computer interface.
    Goyal A; Samadani AA; Guerguerian AM; Chau T
    Neurosci Res; 2016 Jun; 107():47-56. PubMed ID: 26795195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential hypothesis testing for automatic detection of task-related changes in cerebral perfusion in a brain-computer interface.
    Faulkner HG; Myrden A; Li M; Mamun K; Chau T
    Neurosci Res; 2015 Nov; 100():29-38. PubMed ID: 26163771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A brain-computer interface based on bilateral transcranial Doppler ultrasound.
    Myrden AJ; Kushki A; Sejdić E; Guerguerian AM; Chau T
    PLoS One; 2011; 6(9):e24170. PubMed ID: 21915292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a multimodal brain-computer interface: combining fNIRS and fTCD measurements to enable higher classification accuracy.
    Faress A; Chau T
    Neuroimage; 2013 Aug; 77():186-94. PubMed ID: 23541802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brain-computer interface based on functional transcranial doppler ultrasound using wavelet transform and support vector machines.
    Khalaf A; Sybeldon M; Sejdic E; Akcakaya M
    J Neurosci Methods; 2018 Jan; 293():174-182. PubMed ID: 29017899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a hemodynamic BCI using transcranial Doppler without user-specific training data.
    Aleem I; Chau T
    J Neural Eng; 2013 Feb; 10(1):016005. PubMed ID: 23234760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The influence of cerebral blood flow of volunteers with magnetic attachment measured by transcranial Doppler].
    Zheng YL; Wei B; She WJ
    Shanghai Kou Qiang Yi Xue; 2004 Aug; 13(4):266-7. PubMed ID: 15349661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emotional processing in Parkinson's disease. A study using functional transcranial doppler sonography.
    Troisi E; Peppe A; Pierantozzi M; Matteis M; Vernieri F; Stanzione P; Silvestrini M; Caltagirone C
    J Neurol; 2002 Aug; 249(8):993-1000. PubMed ID: 12195443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral blood flow evaluation during the hypnotic state with transcranial Doppler sonography.
    Uslu T; Ilhan A; Ozcan O; Turkoglu D; Ersoy A; Celik E
    Int J Clin Exp Hypn; 2012; 60(1):81-7. PubMed ID: 22098571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral simultaneous assessment of cerebral flow velocity during mental activity.
    Silvestrini M; Cupini LM; Matteis M; Troisi E; Caltagirone C
    J Cereb Blood Flow Metab; 1994 Jul; 14(4):643-8. PubMed ID: 7912242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between blood flow velocity in the middle cerebral artery and EEG during cognitive effort.
    Szirmai I; Amrein I; Pálvölgyi L; Debreczeni R; Kamondi A
    Brain Res Cogn Brain Res; 2005 Jun; 24(1):33-40. PubMed ID: 15922155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Language lateralization in children using functional transcranial Doppler sonography.
    Haag A; Moeller N; Knake S; Hermsen A; Oertel WH; Rosenow F; Hamer HM
    Dev Med Child Neurol; 2010 Apr; 52(4):331-6. PubMed ID: 19732120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcranial Doppler ultrasonography in intensive care.
    Rasulo FA; De Peri E; Lavinio A
    Eur J Anaesthesiol Suppl; 2008; 42():167-73. PubMed ID: 18289437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of incremental levels of continuous positive airway pressure on cerebral blood flow velocity in healthy adult humans.
    Scala R; Turkington PM; Wanklyn P; Bamford J; Elliott MW
    Clin Sci (Lond); 2003 Jun; 104(6):633-9. PubMed ID: 12580765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological changes in transperitoneal versus retroperitoneal laparoscopy in children: a prospective analysis.
    Karsli C; El-Hout Y; Lorenzo AJ; Langer JC; Bägli DJ; Pippi Salle JL; Bissonette B; Farhat WA
    J Urol; 2011 Oct; 186(4 Suppl):1649-52. PubMed ID: 21855932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-Computer Interfaces for Children With Complex Communication Needs and Limited Mobility: A Systematic Review.
    Orlandi S; House SC; Karlsson P; Saab R; Chau T
    Front Hum Neurosci; 2021; 15():643294. PubMed ID: 34335203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Validation of an FPGA-Based Configurable Transcranial Doppler Neurofeedback System for Chronic Pain Patients.
    Rey B; Rodríguez A; Lloréns-Bufort E; Tembl J; Muñoz MÁ; Montoya P; Herrero-Bosch V; Monzo JM
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mental Task Evaluation for Hybrid NIRS-EEG Brain-Computer Interfaces.
    Banville H; Gupta R; Falk TH
    Comput Intell Neurosci; 2017; 2017():3524208. PubMed ID: 29181021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online transcranial Doppler ultrasonographic control of an onscreen keyboard.
    Lu J; Mamun KA; Chau T
    Front Hum Neurosci; 2014; 8():199. PubMed ID: 24795590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.