These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Class of solitary wave solutions of the one-dimensional Gross-Pitaevskii equation. Atre R; Panigrahi PK; Agarwal GS Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056611. PubMed ID: 16803061 [TBL] [Abstract][Full Text] [Related]
4. Radiation boundary conditions for the numerical solution of the three-dimensional time-dependent Schrödinger equation with a localized interaction. Heinen M; Kull HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056709. PubMed ID: 19518595 [TBL] [Abstract][Full Text] [Related]
5. Numerical solutions of the Schrödinger equation with source terms or time-dependent potentials. van Dijk W; Toyama FM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063309. PubMed ID: 25615224 [TBL] [Abstract][Full Text] [Related]
6. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry. Nakatsuji H Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372 [TBL] [Abstract][Full Text] [Related]
7. Condensed-phase relaxation of multilevel quantum systems. I. An exactly solvable model. Peter S; Evans DG; Coalson RD J Phys Chem B; 2006 Sep; 110(38):18758-63. PubMed ID: 16986865 [TBL] [Abstract][Full Text] [Related]
8. Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem. Goan HS; Chen PW; Jian CC J Chem Phys; 2011 Mar; 134(12):124112. PubMed ID: 21456650 [TBL] [Abstract][Full Text] [Related]
9. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations. Sun Z; Yang W; Zhang DH Phys Chem Chem Phys; 2012 Feb; 14(6):1827-45. PubMed ID: 22234283 [TBL] [Abstract][Full Text] [Related]
10. Analytical solitary-wave solutions of the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with different external potentials. He JR; Li HM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066607. PubMed ID: 21797507 [TBL] [Abstract][Full Text] [Related]
15. Development of efficient time-evolution method based on three-term recurrence relation. Akama T; Kobayashi O; Nanbu S J Chem Phys; 2015 May; 142(20):204104. PubMed ID: 26026431 [TBL] [Abstract][Full Text] [Related]
16. Eigenvalue problem of the Schrödinger equation via the finite-difference time-domain method. Ren GB; Rorison JM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036705. PubMed ID: 15089440 [TBL] [Abstract][Full Text] [Related]
18. Simulation of the elementary evolution operator with the motional states of an ion in an anharmonic trap. Santos L; Justum Y; Vaeck N; Desouter-Lecomte M J Chem Phys; 2015 Apr; 142(13):134304. PubMed ID: 25854240 [TBL] [Abstract][Full Text] [Related]
19. Computation of many-particle quantum trajectories with exchange interaction: application to the simulation of nanoelectronic devices. Alarcón A; Yaro S; Cartoixà X; Oriols X J Phys Condens Matter; 2013 Aug; 25(32):325601. PubMed ID: 23851417 [TBL] [Abstract][Full Text] [Related]
20. Exact solution for a non-Markovian dissipative quantum dynamics. Ferialdi L; Bassi A Phys Rev Lett; 2012 Apr; 108(17):170404. PubMed ID: 22680843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]