These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23006384)

  • 1. Non-Arrhenius ionic conductivities in glasses due to a distribution of activation energies.
    Bischoff C; Schuller K; Beckman SP; Martin SW
    Phys Rev Lett; 2012 Aug; 109(7):075901. PubMed ID: 23006384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IR, Raman, and NMR studies of the short-range structures of 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] mixed glass-former glasses.
    Bischoff C; Schuller K; Dunlap N; Martin SW
    J Phys Chem B; 2014 Feb; 118(7):1943-53. PubMed ID: 24447260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition Dependence of the Na(+) Ion Conductivity in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] Mixed Glass Former Glasses: A Structural Interpretation of a Negative Mixed Glass Former Effect.
    Martin SW; Bischoff C; Schuller K
    J Phys Chem B; 2015 Dec; 119(51):15738-51. PubMed ID: 26618389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic conductivity of mixed glass former 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P(2)O(5)] glasses.
    Christensen R; Olson G; Martin SW
    J Phys Chem B; 2013 Dec; 117(51):16577-86. PubMed ID: 24295052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous ionic conductivity increase in Li2S + GeS2 + GeO2 glasses.
    Kim Y; Saienga J; Martin SW
    J Phys Chem B; 2006 Aug; 110(33):16318-25. PubMed ID: 16913758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion transport mechanism in glasses: non-Arrhenius conductivity and nonuniversal features.
    Murugavel S; Vaid C; Bhadram VS; Narayana C
    J Phys Chem B; 2010 Oct; 114(42):13381-5. PubMed ID: 20925353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation between I-Ag distance and ionic conductivity in AgI fast-ion-conducting glasses.
    Sanson A; Rocca F; Armellini C; Dalba G; Fornasini P; Grisenti R
    Phys Rev Lett; 2008 Oct; 101(15):155901. PubMed ID: 18999615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical conductivity and relaxation in mixed alkali tellurite glasses.
    Ghosh S; Ghosh A
    J Chem Phys; 2007 May; 126(18):184509. PubMed ID: 17508813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic flexibility, fast-ion conduction, boson and floppy modes in AgPO(3)-AgI glasses.
    Novita DI; Boolchand P; Malki M; Micoulaut M
    J Phys Condens Matter; 2009 May; 21(20):205106. PubMed ID: 21825525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.
    Popova VA; Surovtsev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032308. PubMed ID: 25314447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cation size effects in mixed-ion metaphosphate glasses: structural characterization by multinuclear solid state NMR spectroscopy.
    Schneider J; Tsuchida J; Eckert H
    Phys Chem Chem Phys; 2013 Sep; 15(34):14328-39. PubMed ID: 23877101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonuniversal features of the ac conductivity in ion conducting glasses.
    Roling B; Martiny C
    Phys Rev Lett; 2000 Aug; 85(6):1274-7. PubMed ID: 10991530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge carrier mobility and concentration as a function of composition in AgPO3-AgI glasses.
    Rodrigues AC; Nascimento ML; Bragatto CB; Souquet JL
    J Chem Phys; 2011 Dec; 135(23):234504. PubMed ID: 22191883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase behavior and ionic conductivity in lithium bis(trifluoromethanesulfonyl)imide-doped ionic liquids of the pyrrolidinium cation and Bis(trifluoromethanesulfonyl)imide anion.
    Martinelli A; Matic A; Jacobsson P; Börjesson L; Fernicola A; Scrosati B
    J Phys Chem B; 2009 Aug; 113(32):11247-51. PubMed ID: 19621942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic transport behavior of BaO containing sodium borosilicate glasses.
    Mishra RK; Mishra R; Kaushik CP; Tyagi AK; Tomar BS; Das D; Raj K
    J Hazard Mater; 2009 Jan; 161(2-3):1450-3. PubMed ID: 18562091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What variable-pressure variable-temperature measurements are telling us about ion transport in glass.
    Imrie CT; Konidakis I; Ingram MD
    Dalton Trans; 2004 Oct; (19):3067-70. PubMed ID: 15452632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal expansion of silver iodide-silver molybdate glasses at low temperatures.
    Mandanici A; Raimondo A; Cutroni M; Ramos MA; Rodrigo JG; Vieira S; Armellini C; Rocca F
    J Chem Phys; 2009 May; 130(20):204508. PubMed ID: 19485458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Ideal glassformers" vs "ideal glasses": studies of crystal-free routes to the glassy state by "potential tuning" molecular dynamics, and laboratory calorimetry.
    Kapko V; Zhao Z; Matyushov DV; Austen Angell C
    J Chem Phys; 2013 Mar; 138(12):12A549. PubMed ID: 23556800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical mobility of silver ion in Ag2O-B2O3-P2O5-TeO2 glasses.
    Sklepić K; Vorokhta M; Mošner P; Koudelka L; Moguš-Milanković A
    J Phys Chem B; 2014 Oct; 118(41):12050-8. PubMed ID: 25242657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of ion dynamics and structure of superionic tellurite glasses.
    Dutta D; Ghosh A
    J Chem Phys; 2008 Jan; 128(4):044511. PubMed ID: 18247973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.