These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23006393)

  • 1. Stabilizing the zigzag edge: graphene nanoribbons with sterically constrained terminations.
    Chia CI; Crespi VH
    Phys Rev Lett; 2012 Aug; 109(7):076802. PubMed ID: 23006393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-surface synthesis of graphene nanoribbons with zigzag edge topology.
    Ruffieux P; Wang S; Yang B; Sánchez-Sánchez C; Liu J; Dienel T; Talirz L; Shinde P; Pignedoli CA; Passerone D; Dumslaff T; Feng X; Müllen K; Fasel R
    Nature; 2016 Mar; 531(7595):489-92. PubMed ID: 27008967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Edge State Engineering of Graphene Nanoribbons.
    Su X; Xue Z; Li G; Yu P
    Nano Lett; 2018 Sep; 18(9):5744-5751. PubMed ID: 30111118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of core-loss electron energy-loss spectroscopy at graphene nanoribbon edges.
    Fujita N; Hasnip PJ; Probert MI; Yuan J
    J Phys Condens Matter; 2015 Aug; 27(30):305301. PubMed ID: 26173149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zigzag graphene nanoribbons with saturated edges.
    Kudin KN
    ACS Nano; 2008 Mar; 2(3):516-22. PubMed ID: 19206578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures.
    Zhang G; Li X; Wu G; Wang J; Culcer D; Kaxiras E; Zhang Z
    Nanoscale; 2014 Mar; 6(6):3259-67. PubMed ID: 24509485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant edge state splitting at atomically precise graphene zigzag edges.
    Wang S; Talirz L; Pignedoli CA; Feng X; Müllen K; Fasel R; Ruffieux P
    Nat Commun; 2016 May; 7():11507. PubMed ID: 27181701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene nanoribbon band-gap expansion: broken-bond-induced edge strain and quantum entrapment.
    Zhang X; Kuo JL; Gu M; Bai P; Sun CQ
    Nanoscale; 2010 Oct; 2(10):2160-3. PubMed ID: 20697611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The half-metallicity of zigzag graphene nanoribbons with asymmetric edge terminations.
    Li Z; Huang B; Duan W
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5374-8. PubMed ID: 21125901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique chemical reactivity of a graphene nanoribbon's zigzag edge.
    Jiang DE; Sumpter BG; Dai S
    J Chem Phys; 2007 Apr; 126(13):134701. PubMed ID: 17430050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic edge states and coherent manipulation of graphene nanoribbons.
    Slota M; Keerthi A; Myers WK; Tretyakov E; Baumgarten M; Ardavan A; Sadeghi H; Lambert CJ; Narita A; Müllen K; Bogani L
    Nature; 2018 May; 557(7707):691-695. PubMed ID: 29849157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and magnetic properties of zigzag graphene nanoribbons on the (111) surface of Cu, Ag, and Au.
    Li Y; Zhang W; Morgenstern M; Mazzarello R
    Phys Rev Lett; 2013 May; 110(21):216804. PubMed ID: 23745911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen Atoms on Zigzag Graphene Nanoribbons: Chemistry and Magnetism Meet at the Edge.
    Pizzochero M; Kaxiras E
    Nano Lett; 2022 Mar; 22(5):1922-1928. PubMed ID: 35167308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended Klein edges in graphene.
    He K; Robertson AW; Lee S; Yoon E; Lee GD; Warner JH
    ACS Nano; 2014 Dec; 8(12):12272-9. PubMed ID: 25533172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-polarized transport in hydrogen-passivated graphene and silicene nanoribbons with magnetic transition-metal substituents.
    García-Fuente A; Gallego LJ; Vega A
    Phys Chem Chem Phys; 2016 Aug; 18(32):22606-16. PubMed ID: 27477688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.
    Li YY; Chen MX; Weinert M; Li L
    Nat Commun; 2014 Jul; 5():4311. PubMed ID: 24986261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edge versus interior in the chemical bonding and magnetism of zigzag edged triangular graphene molecules.
    Philpott MR; Vukovic S; Kawazoe Y; Lester WA
    J Chem Phys; 2010 Jul; 133(4):044708. PubMed ID: 20687677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.