These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23006402)

  • 1. Photon-assisted tunneling through self-assembled InAs quantum dots in the terahertz frequency range.
    Shibata K; Umeno A; Cha KM; Hirakawa K
    Phys Rev Lett; 2012 Aug; 109(7):077401. PubMed ID: 23006402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum dots for terahertz generation.
    Liu HC; Aslan B; Gupta JA; Wasilewski ZR; Aers GC; Springthorpe AJ; Buchanan M
    J Phys Condens Matter; 2008 Sep; 20(38):384211. PubMed ID: 21693819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confined photocarrier transport in InAs pyramidal quantum dots via terahertz time-domain spectroscopy.
    Presto JM; Prieto EA; Omambac KM; Afalla JP; Lumantas DA; Salvador AA; Somintac AS; Estacio ES; Yamamoto K; Tani M
    Opt Express; 2015 Jun; 23(11):14532-40. PubMed ID: 26072813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.
    Wang T; Vaxenburg R; Liu W; Rupich SM; Lifshitz E; Efros AL; Talapin DV; Sibener SJ
    ACS Nano; 2015 Jan; 9(1):725-32. PubMed ID: 25531244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photon statistics from coupled quantum dots.
    Gerardot BD; Strauf S; de Dood MJ; Bychkov AM; Badolato A; Hennessy K; Hu EL; Bouwmeester D; Petroff PM
    Phys Rev Lett; 2005 Sep; 95(13):137403. PubMed ID: 16197178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz detection with an antenna-coupled highly-doped silicon quantum dot.
    Okamoto T; Fujimura N; Crespi L; Kodera T; Kawano Y
    Sci Rep; 2019 Dec; 9(1):18574. PubMed ID: 31819074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz Field Enhancement and Photon-Assisted Tunneling in Single-Molecule Transistors.
    Yoshida K; Shibata K; Hirakawa K
    Phys Rev Lett; 2015 Sep; 115(13):138302. PubMed ID: 26451585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical imaging of electrical carrier injection into individual InAs quantum dots.
    Baumgartner A; Stock E; Patanè A; Eaves L; Henini M; Bimberg D
    Phys Rev Lett; 2010 Dec; 105(25):257401. PubMed ID: 21231625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terahertz intersublevel transitions in single self-assembled InAs quantum dots with variable electron numbers.
    Zhang Y; Shibata K; Nagai N; Ndebeka-Bandou C; Bastard G; Hirakawa K
    Nano Lett; 2015 Feb; 15(2):1166-70. PubMed ID: 25579415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron emissions in InAs quantum dots containing a nitrogen incorporation induced defect state: the influence of thermal annealing.
    Chen JF; Yu CC; Yang CH
    Nanotechnology; 2008 Dec; 19(49):495201. PubMed ID: 21730663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong terahertz emission and its origin from catalyst-free InAs nanowire arrays.
    Arlauskas A; Treu J; Saller K; Beleckaitė I; Koblmüller G; Krotkus A
    Nano Lett; 2014 Mar; 14(3):1508-14. PubMed ID: 24502812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Scalable Entangled Photon Sources with Self-Assembled InAs/GaAs Quantum Dots.
    Wang J; Gong M; Guo GC; He L
    Phys Rev Lett; 2015 Aug; 115(6):067401. PubMed ID: 26296130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orbital Tuning of Tunnel Coupling in InAs/InP Nanowire Quantum Dots.
    Sadre Momtaz Z; Servino S; Demontis V; Zannier V; Ercolani D; Rossi F; Rossella F; Sorba L; Beltram F; Roddaro S
    Nano Lett; 2020 Mar; 20(3):1693-1699. PubMed ID: 32048854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave-Assisted Tunneling in Hard-Wall InAs/InP Nanowire Quantum Dots.
    Cornia S; Rossella F; Demontis V; Zannier V; Beltram F; Sorba L; Affronte M; Ghirri A
    Sci Rep; 2019 Dec; 9(1):19523. PubMed ID: 31863018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic photon pairs and coherent optical control of a single quantum dot.
    Jayakumar H; Predojević A; Huber T; Kauten T; Solomon GS; Weihs G
    Phys Rev Lett; 2013 Mar; 110(13):135505. PubMed ID: 23581338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive Photoresponse of Graphene Quantum Dots in the Coulomb Blockade Regime to THz Radiation.
    Riccardi E; Massabeau S; Valmorra F; Messelot S; Rosticher M; Tignon J; Watanabe K; Taniguchi T; Delbecq M; Dhillon S; Ferreira R; Balibar S; Kontos T; Mangeney J
    Nano Lett; 2020 Jul; 20(7):5408-5414. PubMed ID: 32470310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm.
    Liu WS; Tseng HL; Kuo PC
    Opt Express; 2014 Aug; 22(16):18860-9. PubMed ID: 25320972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-dot spectroscopy via elastic single-electron tunneling through a pair of coupled quantum dots.
    Ota T; Ono K; Stopa M; Hatano T; Tarucha S; Song HZ; Nakata Y; Miyazawa T; Ohshima T; Yokoyama N
    Phys Rev Lett; 2004 Aug; 93(6):066801. PubMed ID: 15323648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum light emission of two lateral tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a tunable static electric field.
    Beirne GJ; Hermannstädter C; Wang L; Rastelli A; Schmidt OG; Michler P
    Phys Rev Lett; 2006 Apr; 96(13):137401. PubMed ID: 16712031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.