These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23006480)

  • 1. Dihydropyridine receptors actively control gating of ryanodine receptors in resting mouse skeletal muscle fibres.
    Robin G; Allard B
    J Physiol; 2012 Dec; 590(23):6027-36. PubMed ID: 23006480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission of information from cardiac dihydropyridine receptor to ryanodine receptor: evidence from BayK 8644 effects on resting Ca(2+) sparks.
    Katoh H; Schlotthauer K; Bers DM
    Circ Res; 2000 Jul; 87(2):106-11. PubMed ID: 10903993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ca 2+ leak paradox and rogue ryanodine receptors: SR Ca 2+ efflux theory and practice.
    Sobie EA; Guatimosim S; Gómez-Viquez L; Song LS; Hartmann H; Saleet Jafri M; Lederer WJ
    Prog Biophys Mol Biol; 2006; 90(1-3):172-85. PubMed ID: 16326215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ryanodine modification of RyR1 retrogradely affects L-type Ca(2+) channel gating in skeletal muscle.
    Bannister RA; Beam KG
    J Muscle Res Cell Motil; 2009; 30(5-6):217-23. PubMed ID: 19802526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells.
    Protasi F
    Front Biosci; 2002 Mar; 7():d650-8. PubMed ID: 11861217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The foundation of excitation-contraction coupling in skeletal muscle: communication between the transverse tubules and sarcoplasmic reticulum.
    Rall JA
    Adv Physiol Educ; 2024 Dec; 48(4):759-769. PubMed ID: 39116389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of excitation to Ca
    Lukyanenko V; Muriel JM; Bloch RJ
    J Physiol; 2017 Aug; 595(15):5191-5207. PubMed ID: 28568606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-type Ca2+ channel and ryanodine receptor cross-talk in frog skeletal muscle.
    Squecco R; Bencini C; Piperio C; Francini F
    J Physiol; 2004 Feb; 555(Pt 1):137-52. PubMed ID: 14660705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient loss of voltage control of Ca2+ release in the presence of maurocalcine in skeletal muscle.
    Pouvreau S; Csernoch L; Allard B; Sabatier JM; De Waard M; Ronjat M; Jacquemond V
    Biophys J; 2006 Sep; 91(6):2206-15. PubMed ID: 16782801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational coupling of DHPR and RyR1 in skeletal myotubes is influenced by long-range allosterism: evidence for a negative regulatory module.
    Lee EH; Lopez JR; Li J; Protasi F; Pessah IN; Kim DH; Allen PD
    Am J Physiol Cell Physiol; 2004 Jan; 286(1):C179-89. PubMed ID: 13679303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium waves induced by hypertonic solutions in intact frog skeletal muscle fibres.
    Chawla S; Skepper JN; Hockaday AR; Huang CL
    J Physiol; 2001 Oct; 536(Pt 2):351-9. PubMed ID: 11600671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking the sarcoplasmic reticulum membrane voltage in muscle with a FRET biosensor.
    Sanchez C; Berthier C; Allard B; Perrot J; Bouvard C; Tsutsui H; Okamura Y; Jacquemond V
    J Gen Physiol; 2018 Aug; 150(8):1163-1177. PubMed ID: 29899059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ entry-independent effects of L-type Ca2+ channel modulators on Ca2+ sparks in ventricular myocytes.
    Copello JA; Zima AV; Diaz-Sylvester PL; Fill M; Blatter LA
    Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2129-40. PubMed ID: 17314267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disrupted T-tubular network accounts for asynchronous calcium release in MTM1-deficient skeletal muscle.
    Szentesi P; Dienes B; Kutchukian C; Czirjak T; Buj-Bello A; Jacquemond V; Csernoch L
    J Physiol; 2023 Jan; 601(1):99-121. PubMed ID: 36408764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sarcoplasmic reticulum and the control of muscle contraction.
    Franzini-Armstrong C
    FASEB J; 1999 Dec; 13 Suppl 2():S266-70. PubMed ID: 10619141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preserved Ca
    Jaque-Fernandez F; Beaulant A; Berthier C; Monteiro L; Allard B; Casas M; Rieusset J; Jacquemond V
    Diabetologia; 2020 Nov; 63(11):2471-2481. PubMed ID: 32840676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DHPR activation underlies SR Ca2+ release induced by osmotic stress in isolated rat skeletal muscle fibers.
    Pickering JD; White E; Duke AM; Steele DS
    J Gen Physiol; 2009 May; 133(5):511-24. PubMed ID: 19398777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+) leakage out of the sarcoplasmic reticulum is increased in type I skeletal muscle fibres in aged humans.
    Lamboley CR; Wyckelsma VL; McKenna MJ; Murphy RM; Lamb GD
    J Physiol; 2016 Jan; 594(2):469-81. PubMed ID: 26574292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal dihydropyridine and ryanodine receptor interactions in skeletal muscle activation.
    Huang CL; Pedersen TH; Fraser JA
    J Muscle Res Cell Motil; 2011 Nov; 32(3):171-202. PubMed ID: 21993921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle.
    Franzini-Armstrong C; Protasi F; Ramesh V
    Ann N Y Acad Sci; 1998 Sep; 853():20-30. PubMed ID: 10603933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.