These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23006578)

  • 1. Motor recovery mechanisms in patients with middle cerebral artery infarct: a mini-review.
    Jang SH
    Eur Neurol; 2012; 68(4):234-9. PubMed ID: 23006578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peri-infarct reorganization of an injured corticoreticulospinal tract in a patient with cerebral infarct.
    Jang SH; Lee J; Lee HD
    Int J Stroke; 2015 Aug; 10(6):E62-3. PubMed ID: 26202715
    [No Abstract]   [Full Text] [Related]  

  • 3. Motor outcome prediction using diffusion tensor tractography of the corticospinal tract in large middle cerebral artery territory infarct.
    Kim EH; Lee J; Jang SH
    NeuroRehabilitation; 2013; 32(3):583-90. PubMed ID: 23648612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor outcome and motor recovery mechanisms in pontine infarct: a review.
    Jang SH
    NeuroRehabilitation; 2012; 30(2):147-52. PubMed ID: 22430580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor recovery via the peri-infarct area in patients with corona radiata infarct.
    Kwon YH; Lee CH; Ahn SH; Lee MY; Yang DS; Byun WM; Park JW; Jang SH
    NeuroRehabilitation; 2007; 22(2):105-8. PubMed ID: 17656835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contralesional motor cortex activation depends on ipsilesional corticospinal tract integrity in well-recovered subcortical stroke patients.
    Lotze M; Beutling W; Loibl M; Domin M; Platz T; Schminke U; Byblow WD
    Neurorehabil Neural Repair; 2012; 26(6):594-603. PubMed ID: 22140195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous Neuronal Plasticity in the Contralateral Motor Cortex and Corticospinal Tract after Focal Cortical Infarction in Hypertensive Rats.
    Huang X; Wang X; Yang M; Pan X; Duan M; Wen X; Cai H; Jiang G; Chen L
    J Stroke Cerebrovasc Dis; 2020 Dec; 29(12):105235. PubMed ID: 32992200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient middle cerebral artery occlusion disrupts the forelimb movement representations of rat motor cortex.
    Gharbawie OA; Williams PT; Kolb B; Whishaw IQ
    Eur J Neurosci; 2008 Sep; 28(5):951-63. PubMed ID: 18717732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor control via spared peri-infarct corticospinal tract in patients with pontine infarct.
    Park JW; Kim SH; Kim YW; Kim JY; Park SY; Son SM; Bai DS; Jang SH
    J Comput Assist Tomogr; 2008; 32(1):159-62. PubMed ID: 18303307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relation between the motor evoked potential and diffusion tensor tractography for the corticospinal tract in chronic hemiparetic patients with cerebral infarct.
    Jang SH; Kim DH; Kim SH; Seo JP
    Somatosens Mot Res; 2017 Jun; 34(2):134-138. PubMed ID: 28691588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.
    Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME
    Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the corticospinal tract in motor recovery in patients with a stroke: a review.
    Jang SH
    NeuroRehabilitation; 2009; 24(3):285-90. PubMed ID: 19458437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal motor cortex excitability in congenital stroke.
    Berweck S; Walther M; Brodbeck V; Wagner N; Koerte I; Henschel V; Juenger H; Staudt M; Mall V
    Pediatr Res; 2008 Jan; 63(1):84-8. PubMed ID: 18043504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peri-infarct reorganization of motor function in patients with pontine infarct.
    Ahn YH; You SH; Randolph M; Kim SH; Ahn SH; Byun WM; Yang DS; Jang SH
    NeuroRehabilitation; 2006; 21(3):233-7. PubMed ID: 17167192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy.
    Takeda K; Gomi Y; Imai I; Shimoda N; Hiwatari M; Kato H
    Neurosci Res; 2007 Oct; 59(2):136-44. PubMed ID: 17681629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of diffusion tensor imaging studies on motor recovery mechanisms in stroke patients.
    Jang SH
    NeuroRehabilitation; 2011; 28(4):345-52. PubMed ID: 21725167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor outcome according to the integrity of the corticospinal tract determined by diffusion tensor tractography in the early stage of corona radiata infarct.
    Cho SH; Kim DG; Kim DS; Kim YH; Lee CH; Jang SH
    Neurosci Lett; 2007 Oct; 426(2):123-7. PubMed ID: 17897782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peri-infarct reorganization in a patient with corona radiata infarct: a combined study of functional MRI and diffusion tensor image tractography.
    Jang SH; Ahn SH; Ha JS; Lee SJ; Lee J; Ahn YH
    Restor Neurol Neurosci; 2006; 24(2):65-8. PubMed ID: 16720942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke.
    Ameli M; Grefkes C; Kemper F; Riegg FP; Rehme AK; Karbe H; Fink GR; Nowak DA
    Ann Neurol; 2009 Sep; 66(3):298-309. PubMed ID: 19798637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats.
    Biernaskie J; Szymanska A; Windle V; Corbett D
    Eur J Neurosci; 2005 Feb; 21(4):989-99. PubMed ID: 15787705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.