BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23006764)

  • 21. Network-Based Meta-Analyses of Associations of Multiple Gene Expression Profiles with Bone Mineral Density Variations in Women.
    He H; Cao S; Niu T; Zhou Y; Zhang L; Zeng Y; Zhu W; Wang YP; Deng HW
    PLoS One; 2016; 11(1):e0147475. PubMed ID: 26808152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathway Distiller - multisource biological pathway consolidation.
    Doderer MS; Anguiano Z; Suresh U; Dashnamoorthy R; Bishop AJ; Chen Y
    BMC Genomics; 2012; 13 Suppl 6(Suppl 6):S18. PubMed ID: 23134636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A topology-based score for pathway enrichment.
    Ibrahim MA; Jassim S; Cawthorne MA; Langlands K
    J Comput Biol; 2012 May; 19(5):563-73. PubMed ID: 22468678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrative enrichment analysis: a new computational method to detect dysregulated pathways in heterogeneous samples.
    Yu X; Zeng T; Li G
    BMC Genomics; 2015 Nov; 16():918. PubMed ID: 26556243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-expression network-based analysis of hippocampal expression data associated with Alzheimer's disease using a novel algorithm.
    Yue H; Yang BO; Yang F; Hu XL; Kong FB
    Exp Ther Med; 2016 May; 11(5):1707-1715. PubMed ID: 27168792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.
    Lai Y; Zhang F; Nayak TK; Modarres R; Lee NH; McCaffrey TA
    BMC Genomics; 2017 Jan; 18(Suppl 1):1050. PubMed ID: 28198679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes.
    Gu Z; Liu J; Cao K; Zhang J; Wang J
    BMC Syst Biol; 2012 Jun; 6():56. PubMed ID: 22672776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crosstalk pathway inference using topological information and biclustering of gene expression data.
    Dussaut JS; Gallo CA; Cecchini RL; Carballido JA; Ponzoni I
    Biosystems; 2016 Dec; 150():1-12. PubMed ID: 27521767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A critical comparison of topology-based pathway analysis methods.
    Ihnatova I; Popovici V; Budinska E
    PLoS One; 2018; 13(1):e0191154. PubMed ID: 29370226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Pathway Coexpression Network: Revealing pathway relationships.
    Pita-Juárez Y; Altschuler G; Kariotis S; Wei W; Koler K; Green C; Tanzi RE; Hide W
    PLoS Comput Biol; 2018 Mar; 14(3):e1006042. PubMed ID: 29554099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel implementation of conditional co-regulation by graph theory to derive co-expressed genes from microarray data.
    Rawat A; Seifert GJ; Deng Y
    BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S7. PubMed ID: 18793471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A biological evaluation of six gene set analysis methods for identification of differentially expressed pathways in microarray data.
    Dinu I; Liu Q; Potter JD; Adewale AJ; Jhangri GS; Mueller T; Einecke G; Famulsky K; Halloran P; Yasui Y
    Cancer Inform; 2008; 6():357-68. PubMed ID: 19259416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of genes and pathways involved in kidney renal clear cell carcinoma.
    Yang W; Yoshigoe K; Qin X; Liu JS; Yang JY; Niemierko A; Deng Y; Liu Y; Dunker A; Chen Z; Wang L; Xu D; Arabnia HR; Tong W; Yang M
    BMC Bioinformatics; 2014; 15 Suppl 17(Suppl 17):S2. PubMed ID: 25559354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A statistical framework for differential network analysis from microarray data.
    Gill R; Datta S; Datta S
    BMC Bioinformatics; 2010 Feb; 11():95. PubMed ID: 20170493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression.
    Mo WJ; Fu XP; Han XT; Yang GY; Zhang JG; Guo FH; Huang Y; Mao YM; Li Y; Xie Y
    BMC Genomics; 2009 Jul; 10():340. PubMed ID: 19640296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using BioPAX-Parser (BiP) to enrich lists of genes or proteins with pathway data.
    Agapito G; Cannataro M
    BMC Bioinformatics; 2021 Sep; 22(Suppl 13):376. PubMed ID: 34592927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovering causal signaling pathways through gene-expression patterns.
    Parikh JR; Klinger B; Xia Y; Marto JA; Blüthgen N
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W109-17. PubMed ID: 20494976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathway recognition and augmentation by computational analysis of microarray expression data.
    Novak BA; Jain AN
    Bioinformatics; 2006 Jan; 22(2):233-41. PubMed ID: 16278238
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.