These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23006984)

  • 1. Targeting Rho associated kinases in leukemia and myeloproliferative neoplasms.
    Mali RS; Kapur R
    Oncotarget; 2012 Sep; 3(9):909-10. PubMed ID: 23006984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoform-specific targeting of ROCK proteins in immune cells.
    Zanin-Zhorov A; Flynn R; Waksal SD; Blazar BR
    Small GTPases; 2016 Jul; 7(3):173-7. PubMed ID: 27254302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloproliferative neoplasms 5 years after discovery of JAK2V617F: what is the impact of JAK2 inhibitor therapy?
    Tibes R; Mesa RA
    Leuk Lymphoma; 2011 Jul; 52(7):1178-87. PubMed ID: 21599574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting ROCK signaling in health, malignant and non-malignant diseases.
    Shahbazi R; Baradaran B; Khordadmehr M; Safaei S; Baghbanzadeh A; Jigari F; Ezzati H
    Immunol Lett; 2020 Mar; 219():15-26. PubMed ID: 31904392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The long noncoding RNA HOTAIRM1 controlled by AML1 enhances glucocorticoid resistance by activating RHOA/ROCK1 pathway through suppressing ARHGAP18.
    Liang L; Gu W; Li M; Gao R; Zhang X; Guo C; Mi S
    Cell Death Dis; 2021 Jul; 12(7):702. PubMed ID: 34262023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rho kinase regulates the survival and transformation of cells bearing oncogenic forms of KIT, FLT3, and BCR-ABL.
    Mali RS; Ramdas B; Ma P; Shi J; Munugalavadla V; Sims E; Wei L; Vemula S; Nabinger SC; Goodwin CB; Chan RJ; Traina F; Visconte V; Tiu RV; Lewis TA; Stern AM; Wen Q; Crispino JD; Boswell HS; Kapur R
    Cancer Cell; 2011 Sep; 20(3):357-69. PubMed ID: 21907926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct roles of ROCK1 and ROCK2 during development of porcine preimplantation embryos.
    Zhang JY; Dong HS; Oqani RK; Lin T; Kang JW; Jin DI
    Reproduction; 2014 Jul; 148(1):99-107. PubMed ID: 24803490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of a signaling feedback circuit that defines interferon responses in myeloproliferative neoplasms.
    Saleiro D; Wen JQ; Kosciuczuk EM; Eckerdt F; Beauchamp EM; Oku CV; Blyth GT; Fischietti M; Ilut L; Colamonici M; Palivos W; Atsaves PA; Tan D; Kocherginsky M; Weinberg RS; Fish EN; Crispino JD; Hoffman R; Platanias LC
    Nat Commun; 2022 Apr; 13(1):1750. PubMed ID: 35365653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JAK-mutant myeloproliferative neoplasms.
    Levine RL
    Curr Top Microbiol Immunol; 2012; 355():119-33. PubMed ID: 21823028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fasudil, a clinically safe ROCK inhibitor, decreases disease burden in a Cbl/Cbl-b deficiency-driven murine model of myeloproliferative disorders.
    William BM; An W; Feng D; Nadeau S; Mohapatra BC; Storck MA; Band V; Band H
    Hematology; 2016 May; 21(4):218-24. PubMed ID: 26177294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Application of novel tyrosine-kinase inhibitors for the treatment of leukemia and Ph-negative myeloproliferative neoplasms].
    Kirito K
    Rinsho Ketsueki; 2011 Jul; 52(7):460-8. PubMed ID: 21821977
    [No Abstract]   [Full Text] [Related]  

  • 12. Distinct Roles For ROCK1 and ROCK2 in the Regulation of Oxldl-Mediated Endothelial Dysfunction.
    Huang L; Dai F; Tang L; Bao X; Liu Z; Huang C; Zhang T; Yao W
    Cell Physiol Biochem; 2018; 49(2):565-577. PubMed ID: 30165352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clonal analysis of hematologic malignancies using Mediterranean G6PD mosaicism.
    Canepa L; Melani C; Broccia G; Meloni T; Miglino M; Ferraris AM; Gaetani GF
    Haematologica; 1988; 73(5):343-6. PubMed ID: 3143630
    [No Abstract]   [Full Text] [Related]  

  • 14. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens.
    Priya R; Liang X; Teo JL; Duszyc K; Yap AS; Gomez GA
    Mol Biol Cell; 2017 Jan; 28(1):12-20. PubMed ID: 28035042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rho-kinase: important new therapeutic target in cardiovascular diseases.
    Satoh K; Fukumoto Y; Shimokawa H
    Am J Physiol Heart Circ Physiol; 2011 Aug; 301(2):H287-96. PubMed ID: 21622831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting phosphatidylinositol-3-kinase pathway for the treatment of Philadelphia-negative myeloproliferative neoplasms.
    Pandey R; Kapur R
    Mol Cancer; 2015 Jun; 14():118. PubMed ID: 26062813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [New mutations in myeloproliferative neoplasms; 2014 update].
    Kirito K
    Rinsho Ketsueki; 2014 Oct; 55(10):1833-40. PubMed ID: 25297747
    [No Abstract]   [Full Text] [Related]  

  • 18. Should we keep rocking? Portraits from targeting Rho kinases in cancer.
    de Sousa GR; Vieira GM; das Chagas PF; Pezuk JA; Brassesco MS
    Pharmacol Res; 2020 Oct; 160():105093. PubMed ID: 32726671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Janus-activated kinase 2 inhibitors: a new era of targeted therapies providing significant clinical benefit for Philadelphia chromosome-negative myeloproliferative neoplasms.
    Verstovsek S
    J Clin Oncol; 2011 Mar; 29(7):781-3. PubMed ID: 21220594
    [No Abstract]   [Full Text] [Related]  

  • 20. Myelodysplastic/myeloproliferative neoplasms: a disease in need of recognition.
    Khan M; Sarfraz M; Daver N
    Future Oncol; 2017 Jan; 13(2):117-120. PubMed ID: 27676208
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.