These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 23007022)
1. Human mesenchymal precursor cells (Stro-1⁺) from spinal cord injury patients improve functional recovery and tissue sparing in an acute spinal cord injury rat model. Hodgetts SI; Simmons PJ; Plant GW Cell Transplant; 2013; 22(3):393-412. PubMed ID: 23007022 [TBL] [Abstract][Full Text] [Related]
2. A comparison of the behavioral and anatomical outcomes in sub-acute and chronic spinal cord injury models following treatment with human mesenchymal precursor cell transplantation and recombinant decorin. Hodgetts SI; Simmons PJ; Plant GW Exp Neurol; 2013 Oct; 248():343-59. PubMed ID: 23867131 [TBL] [Abstract][Full Text] [Related]
3. A comparison between neurally induced bone marrow derived mesenchymal stem cells and olfactory ensheathing glial cells to repair spinal cord injuries in rat. Yazdani SO; Pedram M; Hafizi M; Kabiri M; Soleimani M; Dehghan MM; Jahanzad I; Gheisari Y; Hashemi SM Tissue Cell; 2012 Aug; 44(4):205-13. PubMed ID: 22551686 [TBL] [Abstract][Full Text] [Related]
4. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats. Ban DX; Ning GZ; Feng SQ; Wang Y; Zhou XH; Liu Y; Chen JT Regen Med; 2011 Nov; 6(6):707-20. PubMed ID: 22050523 [TBL] [Abstract][Full Text] [Related]
6. Acellular spinal cord scaffold seeded with bone marrow stromal cells protects tissue and promotes functional recovery in spinal cord-injured rats. Chen J; Zhang Z; Liu J; Zhou R; Zheng X; Chen T; Wang L; Huang M; Yang C; Li Z; Yang C; Bai X; Jin D J Neurosci Res; 2014 Mar; 92(3):307-17. PubMed ID: 24375695 [TBL] [Abstract][Full Text] [Related]
7. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Zhou Z; Chen Y; Zhang H; Min S; Yu B; He B; Jin A Cytotherapy; 2013 Apr; 15(4):434-48. PubMed ID: 23376106 [TBL] [Abstract][Full Text] [Related]
8. Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing TrkC into neuron-like cells in transected spinal cord of rats. Ding Y; Yan Q; Ruan JW; Zhang YQ; Li WJ; Zeng X; Huang SF; Zhang YJ; Wu JL; Fisher D; Dong H; Zeng YS Cell Transplant; 2013; 22(1):65-86. PubMed ID: 23006476 [TBL] [Abstract][Full Text] [Related]
9. Comparison of functional and histological outcomes after intralesional, intracisternal, and intravenous transplantation of human bone marrow-derived mesenchymal stromal cells in a rat model of spinal cord injury. Shin DA; Kim JM; Kim HI; Yi S; Ha Y; Yoon DH; Kim KN Acta Neurochir (Wien); 2013 Oct; 155(10):1943-50. PubMed ID: 23821338 [TBL] [Abstract][Full Text] [Related]
10. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion. Barbour HR; Plant CD; Harvey AR; Plant GW BMC Neurosci; 2013 Sep; 14():106. PubMed ID: 24070030 [TBL] [Abstract][Full Text] [Related]
11. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats. Liu J; Chen J; Liu B; Yang C; Xie D; Zheng X; Xu S; Chen T; Wang L; Zhang Z; Bai X; Jin D J Neurol Sci; 2013 Feb; 325(1-2):127-36. PubMed ID: 23317924 [TBL] [Abstract][Full Text] [Related]
12. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451 [TBL] [Abstract][Full Text] [Related]
13. Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord: a comparative study. Samdani AF; Paul C; Betz RR; Fischer I; Neuhuber B Spine (Phila Pa 1976); 2009 Nov; 34(24):2605-12. PubMed ID: 19881401 [TBL] [Abstract][Full Text] [Related]
14. Survival of neurally induced mesenchymal cells may determine degree of motor recovery in injured spinal cord rats. Alexanian AR; Kwok WM; Pravdic D; Maiman DJ; Fehlings MG Restor Neurol Neurosci; 2010; 28(6):761-7. PubMed ID: 21209491 [TBL] [Abstract][Full Text] [Related]
15. Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury. Cizkova D; Novotna I; Slovinska L; Vanicky I; Jergova S; Rosocha J; Radonak J J Neurotrauma; 2011 Sep; 28(9):1951-61. PubMed ID: 20822464 [TBL] [Abstract][Full Text] [Related]
17. Transplanted neurally modified bone marrow-derived mesenchymal stem cells promote tissue protection and locomotor recovery in spinal cord injured rats. Alexanian AR; Fehlings MG; Zhang Z; Maiman DJ Neurorehabil Neural Repair; 2011; 25(9):873-80. PubMed ID: 21844281 [TBL] [Abstract][Full Text] [Related]
18. Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Osaka M; Honmou O; Murakami T; Nonaka T; Houkin K; Hamada H; Kocsis JD Brain Res; 2010 Jul; 1343():226-35. PubMed ID: 20470759 [TBL] [Abstract][Full Text] [Related]
19. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959 [TBL] [Abstract][Full Text] [Related]
20. Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat. Han X; Yang N; Cui Y; Xu Y; Dang G; Song C Neurosci Lett; 2012 Jul; 521(2):136-41. PubMed ID: 22683506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]