BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 23007462)

  • 1. Effects of the ventilatory stimulant, doxapram on human TASK-3 (KCNK9, K2P9.1) channels and TASK-1 (KCNK3, K2P3.1) channels.
    Cunningham KP; MacIntyre DE; Mathie A; Veale EL
    Acta Physiol (Oxf); 2020 Feb; 228(2):e13361. PubMed ID: 31423744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative Stress and Immune Response in Melanoma: Ion Channels as Targets of Therapy.
    Remigante A; Spinelli S; Marino A; Pusch M; Morabito R; Dossena S
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRPM2 Oxidation Activates Two Distinct Potassium Channels in Melanoma Cells through Intracellular Calcium Increase.
    Ferrera L; Barbieri R; Picco C; Zuccolini P; Remigante A; Bertelli S; Fumagalli MR; Zifarelli G; La Porta CAM; Gavazzo P; Pusch M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bepridil, a class IV antiarrhythmic agent, can block the TREK-1 potassium channel.
    Wang Y; Fu Z; Ma Z; Li N; Shang H
    Ann Transl Med; 2021 Jul; 9(14):1123. PubMed ID: 34430564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A549 in-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma.
    Langthaler S; Rienmüller T; Scheruebel S; Pelzmann B; Shrestha N; Zorn-Pauly K; Schreibmayer W; Koff A; Baumgartner C
    PLoS Comput Biol; 2021 Jun; 17(6):e1009091. PubMed ID: 34157016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease.
    Iturriaga R; Alcayaga J; Chapleau MW; Somers VK
    Physiol Rev; 2021 Jul; 101(3):1177-1235. PubMed ID: 33570461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute oxygen sensing by the carotid body: a rattlebag of molecular mechanisms.
    Rakoczy RJ; Wyatt CN
    J Physiol; 2018 Aug; 596(15):2969-2976. PubMed ID: 29214644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TASK-1 potassium channel is not critically involved in mediating hypoxic pulmonary vasoconstriction of murine intra-pulmonary arteries.
    Murtaza G; Mermer P; Goldenberg A; Pfeil U; Paddenberg R; Weissmann N; Lochnit G; Kummer W
    PLoS One; 2017; 12(3):e0174071. PubMed ID: 28301582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moderate inhibition of mitochondrial function augments carotid body hypoxic sensitivity.
    Holmes AP; Turner PJ; Buckler KJ; Kumar P
    Pflugers Arch; 2016 Jan; 468(1):143-155. PubMed ID: 26490460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing.
    Buckler KJ
    Pflugers Arch; 2015 May; 467(5):1013-25. PubMed ID: 25623783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels.
    Veit F; Pak O; Brandes RP; Weissmann N
    Antioxid Redox Signal; 2015 Feb; 22(6):537-52. PubMed ID: 25545236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of modulators of AMP-activated protein kinase on TASK-1/3 and intracellular Ca(2+) concentration in rat carotid body glomus cells.
    Kim D; Kang D; Martin EA; Kim I; Carroll JL
    Respir Physiol Neurobiol; 2014 May; 195():19-26. PubMed ID: 24530802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TASK-2: a K2P K(+) channel with complex regulation and diverse physiological functions.
    Cid LP; Roa-Rojas HA; Niemeyer MI; González W; Araki M; Araki K; Sepúlveda FV
    Front Physiol; 2013; 4():198. PubMed ID: 23908634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of K2P3.1 (TASK-1), K2P9.1 (TASK-3), and TASK-1/3 heteromer by reactive oxygen species.
    Papreck JR; Martin EA; Lazzarini P; Kang D; Kim D
    Pflugers Arch; 2012 Nov; 464(5):471-80. PubMed ID: 23007462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TASK-1 (K
    Kang D; Wang J; Hogan JO; Kim D
    Adv Exp Med Biol; 2018; 1071():35-41. PubMed ID: 30357731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells.
    Kim D; Cavanaugh EJ; Kim I; Carroll JL
    J Physiol; 2009 Jun; 587(Pt 12):2963-75. PubMed ID: 19403596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+)-activated K+ channel inhibition by reactive oxygen species.
    Soto MA; González C; Lissi E; Vergara C; Latorre R
    Am J Physiol Cell Physiol; 2002 Mar; 282(3):C461-71. PubMed ID: 11832330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The TASK background K2P channels: chemo- and nutrient sensors.
    Duprat F; Lauritzen I; Patel A; Honoré E
    Trends Neurosci; 2007 Nov; 30(11):573-80. PubMed ID: 17945357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of TASK-like K+ channels in oxygen sensing in the carotid body.
    Buckler KJ; Williams BA; Orozco RV; Wyatt CN
    Novartis Found Symp; 2006; 272():73-85; discussion 85-94, 131-40. PubMed ID: 16686430
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.