These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 23007749)

  • 1. Introduction to the IEEE International Symposium on Applications of Ferroelectrics and International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials.
    Ye ZG; Tan X; Bokov AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Sep; 59(9):1853-4. PubMed ID: 23007749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction to the special issue on the joint meeting of the 19th IEEE International Symposium on the Applications of Ferroelectrics and the 10th European Conference on the Applications of Polar Dielectrics.
    Tsurumi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1712-3. PubMed ID: 21937301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and function of molecular and bioelectronics devices.
    Krstic P; Forzani E; Tao N; Korkin A
    Nanotechnology; 2007 Oct; 18(42):420201. PubMed ID: 21730433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale compositional mapping with gentle forces.
    García R; Magerle R; Perez R
    Nat Mater; 2007 Jun; 6(6):405-11. PubMed ID: 17541439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A decade of piezoresponse force microscopy: progress, challenges, and opportunities.
    Kalinin SV; Rar A; Jesse S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2226-52. PubMed ID: 17186903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermittent contact mode piezoresponse force microscopy in a liquid environment.
    Rodriguez BJ; Jesse S; Habelitz S; Proksch R; Kalinin SV
    Nanotechnology; 2009 May; 20(19):195701. PubMed ID: 19420645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction to the Special Issue on the Joint Meeting of 12th International Meeting on Ferroelectricity and 18th IEEE International Symposium on Applications of Ferroelectrics.
    Ren W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2116-7. PubMed ID: 20889393
    [No Abstract]   [Full Text] [Related]  

  • 9. Field Emission 2006. Proceedings of the 50th International Field Emission Symposium and the 19th International Vacuum Nanoelectronics Conference. July 17-20, 2006. Guilin, China.
    Ultramicroscopy; 2007 Sep; 107(9):705-868. PubMed ID: 17533054
    [No Abstract]   [Full Text] [Related]  

  • 10. Towards nanomicrobiology using atomic force microscopy.
    Dufrêne YF
    Nat Rev Microbiol; 2008 Sep; 6(9):674-80. PubMed ID: 18622407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in research on structural characterisation of agricultural products using atomic force microscopy.
    Liu D; Cheng F
    J Sci Food Agric; 2011 Mar; 91(5):783-8. PubMed ID: 21384345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PFM (piezoresponse force microscopy)-aided design for molecular ferroelectrics.
    Zhang HY; Chen XG; Tang YY; Liao WQ; Di FF; Mu X; Peng H; Xiong RG
    Chem Soc Rev; 2021 Jul; 50(14):8248-8278. PubMed ID: 34081064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferroelectric domain in PMN-xPT single crystal studied by piezoresponse force microscopy and finite-element analysis.
    Wong KS; Wang B; Dai JY; Luo H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):952-6. PubMed ID: 18519194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems.
    Sitterberg J; Ozcetin A; Ehrhardt C; Bakowsky U
    Eur J Pharm Biopharm; 2010 Jan; 74(1):2-13. PubMed ID: 19755155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vector piezoresponse force microscopy.
    Kalinin SV; Rodriguez BJ; Jesse S; Shin J; Baddorf AP; Gupta P; Jain H; Williams DB; Gruverman A
    Microsc Microanal; 2006 Jun; 12(3):206-20. PubMed ID: 17481357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An atomic force microscopy mode for nondestructive electromechanical studies and its application to diphenylalanine peptide nanotubes.
    Kalinin A; Atepalikhin V; Pakhomov O; Kholkin AL; Tselev A
    Ultramicroscopy; 2018 Feb; 185():49-54. PubMed ID: 29182919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introduction to atomic force microscopy.
    de Pablo PJ
    Methods Mol Biol; 2011; 783():197-212. PubMed ID: 21909890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of atomic force microscopy as a nanotechnology tool in food science.
    Yang H; Wang Y; Lai S; An H; Li Y; Chen F
    J Food Sci; 2007 May; 72(4):R65-75. PubMed ID: 17995783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time nanofabrication with high-speed atomic force microscopy.
    Vicary JA; Miles MJ
    Nanotechnology; 2009 Mar; 20(9):095302. PubMed ID: 19417485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.