These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23008178)

  • 1. Novel injectable biomimetic hydrogels with carbon nanofibers and self assembled rosette nanotubes for myocardial applications.
    Meng X; Stout DA; Sun L; Beingessner RL; Fenniri H; Webster TJ
    J Biomed Mater Res A; 2013 Apr; 101(4):1095-102. PubMed ID: 23008178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites.
    Asiri AM; Marwani HM; Khan SB; Webster TJ
    Int J Nanomedicine; 2014; 9():5533-9. PubMed ID: 25489241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive rosette nanotube-hydroxyapatite nanocomposites improve osteoblast functions.
    Sun L; Zhang L; Hemraz UD; Fenniri H; Webster TJ
    Tissue Eng Part A; 2012 Sep; 18(17-18):1741-50. PubMed ID: 22530958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering.
    Chen Y; Bilgen B; Pareta RA; Myles AJ; Fenniri H; Ciombor DM; Aaron RK; Webster TJ
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1233-43. PubMed ID: 20184414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.
    Zhang L; Rakotondradany F; Myles AJ; Fenniri H; Webster TJ
    Biomaterials; 2009 Mar; 30(7):1309-20. PubMed ID: 19073342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled rosette nanotubes and poly(2-hydroxyethyl methacrylate) hydrogels promote skin cell functions.
    Sun L; Li D; Hemraz UD; Fenniri H; Webster TJ
    J Biomed Mater Res A; 2014 Oct; 102(10):3446-51. PubMed ID: 24178366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiwalled CNT-pHEMA composite conduit for peripheral nerve repair.
    Arslantunali D; Budak G; Hasirci V
    J Biomed Mater Res A; 2014 Mar; 102(3):828-41. PubMed ID: 23554154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions.
    Tsang M; Chun YW; Im YM; Khang D; Webster TJ
    Tissue Eng Part A; 2011 Jul; 17(13-14):1879-89. PubMed ID: 21417694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L; Rodriguez J; Raez J; Myles AJ; Fenniri H; Webster TJ
    Nanotechnology; 2009 Apr; 20(17):175101. PubMed ID: 19420581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application.
    Stout DA; Yoo J; Santiago-Miranda AN; Webster TJ
    Int J Nanomedicine; 2012; 7():5653-69. PubMed ID: 23180962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds.
    Zhang L; Ramsaywack S; Fenniri H; Webster TJ
    Tissue Eng Part A; 2008 Aug; 14(8):1353-64. PubMed ID: 18588485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA.
    Asiri AM; Marwani HM; Khan SB; Webster TJ
    Int J Nanomedicine; 2015; 10():89-96. PubMed ID: 25565806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-functional electrospun poly(2-hydroxyethyl methacrylate).
    Zhang B; Lalani R; Cheng F; Liu Q; Liu L
    J Biomed Mater Res A; 2011 Dec; 99(3):455-66. PubMed ID: 21887741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro- and nanoscale modification of poly(2-hydroxyethyl methacrylate) hydrogels by AFM lithography and nanoparticle incorporation.
    Podestà A; Ranucci E; Macchi L; Bongiorno G; Ferruti P; Milani P
    J Nanosci Nanotechnol; 2005 Mar; 5(3):425-30. PubMed ID: 15913250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth characteristics of different heart cells on novel nanopatch substrate during electrical stimulation.
    Stout DA; Raimondo E; Marostica G; Webster TJ
    Biomed Mater Eng; 2014; 24(6):2101-7. PubMed ID: 25226907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications.
    Luo Y; Wang S; Shen M; Qi R; Fang Y; Guo R; Cai H; Cao X; Tomás H; Zhu M; Shi X
    Carbohydr Polym; 2013 Jan; 91(1):419-27. PubMed ID: 23044152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic wettability properties of a soft contact lens hydrogel.
    Ketelson HA; Meadows DL; Stone RP
    Colloids Surf B Biointerfaces; 2005 Jan; 40(1):1-9. PubMed ID: 15620833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels.
    MacDonald RA; Voge CM; Kariolis M; Stegemann JP
    Acta Biomater; 2008 Nov; 4(6):1583-92. PubMed ID: 18706876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.