These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 23008181)
21. A ratiometric fluorescent probe for thiols based on a tetrakis(4-hydroxyphenyl)porphyrin-coumarin scaffold. Cao X; Lin W; Yu Q J Org Chem; 2011 Sep; 76(18):7423-30. PubMed ID: 21815660 [TBL] [Abstract][Full Text] [Related]
22. Discriminatory detection of cysteine and homocysteine based on dialdehyde-functionalized aggregation-induced emission fluorophores. Mei J; Wang Y; Tong J; Wang J; Qin A; Sun JZ; Tang BZ Chemistry; 2013 Jan; 19(2):613-20. PubMed ID: 23193021 [TBL] [Abstract][Full Text] [Related]
23. Constructing a FRET-based molecular chemodosimeter for cysteine over homocysteine and glutathione by naphthalimide and phenazine derivatives. Yang L; Qu W; Zhang X; Hang Y; Hua J Analyst; 2015 Jan; 140(1):182-9. PubMed ID: 25407553 [TBL] [Abstract][Full Text] [Related]
24. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells. Wang N; Chen M; Gao J; Ji X; He J; Zhang J; Zhao W Talanta; 2019 Apr; 195():281-289. PubMed ID: 30625544 [TBL] [Abstract][Full Text] [Related]
25. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe. Liu Y; Yu D; Ding S; Xiao Q; Guo J; Feng G ACS Appl Mater Interfaces; 2014 Oct; 6(20):17543-50. PubMed ID: 25253409 [TBL] [Abstract][Full Text] [Related]
26. A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles. Yuan L; Lin W; Yang Y Chem Commun (Camb); 2011 Jun; 47(22):6275-7. PubMed ID: 21503347 [TBL] [Abstract][Full Text] [Related]
28. Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Jung HS; Chen X; Kim JS; Yoon J Chem Soc Rev; 2013 Jul; 42(14):6019-31. PubMed ID: 23689799 [TBL] [Abstract][Full Text] [Related]
29. BODIPY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine. Niu LY; Guan YS; Chen YZ; Wu LZ; Tung CH; Yang QZ J Am Chem Soc; 2012 Nov; 134(46):18928-31. PubMed ID: 23121092 [TBL] [Abstract][Full Text] [Related]
30. Fluorescent sensors for selective detection of thiols: expanding the intramolecular displacement based mechanism to new chromophores. Niu LY; Zheng HR; Chen YZ; Wu LZ; Tung CH; Yang QZ Analyst; 2014 Mar; 139(6):1389-95. PubMed ID: 24466567 [TBL] [Abstract][Full Text] [Related]
31. An improved method for simultaneous analysis of aminothiols in human plasma by high-performance liquid chromatography with fluorescence detection. Cevasco G; Piatek AM; Scapolla C; Thea S J Chromatogr A; 2010 Apr; 1217(14):2158-62. PubMed ID: 20181343 [TBL] [Abstract][Full Text] [Related]
32. Development of a small molecule probe capable of discriminating cysteine, homocysteine, and glutathione with three distinct turn-on fluorescent outputs. Wang F; Guo Z; Li X; Li X; Zhao C Chemistry; 2014 Sep; 20(36):11471-8. PubMed ID: 25056113 [TBL] [Abstract][Full Text] [Related]
33. A ratiometric fluorescent BODIPY-based probe for rapid and highly sensitive detection of cysteine in human plasma. Wang N; Wang Y; Gao J; Ji X; He J; Zhang J; Zhao W Analyst; 2018 Nov; 143(23):5728-5735. PubMed ID: 30320848 [TBL] [Abstract][Full Text] [Related]
34. Broadly Applicable Strategy for the Fluorescence Based Detection and Differentiation of Glutathione and Cysteine/Homocysteine: Demonstration in Vitro and in Vivo. Chen W; Luo H; Liu X; Foley JW; Song X Anal Chem; 2016 Apr; 88(7):3638-46. PubMed ID: 26911923 [TBL] [Abstract][Full Text] [Related]
35. Coumarin-based thiol chemosensor: synthesis, turn-on mechanism, and its biological application. Jung HS; Ko KC; Kim GH; Lee AR; Na YC; Kang C; Lee JY; Kim JS Org Lett; 2011 Mar; 13(6):1498-501. PubMed ID: 21323377 [TBL] [Abstract][Full Text] [Related]
36. BODIPY-based turn-on fluorescent probes for cysteine and homocysteine. Gao J; Tao Y; Wang N; He J; Zhang J; Zhao W Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():77-84. PubMed ID: 29860171 [TBL] [Abstract][Full Text] [Related]
37. A colorimetric and ratiometric fluorescent probe for distinguishing cysteine from biothiols in water and living cells. Han Q; Shi Z; Tang X; Yang L; Mou Z; Li J; Shi J; Chen C; Liu W; Yang H; Liu W Org Biomol Chem; 2014 Jul; 12(27):5023-30. PubMed ID: 24895119 [TBL] [Abstract][Full Text] [Related]
38. Dual-Emission Channels for Simultaneous Sensing of Cysteine and Homocysteine in Living Cells. Li Y; Liu W; Zhang H; Wang M; Wu J; Ge J; Wang P Chem Asian J; 2017 Aug; 12(16):2098-2103. PubMed ID: 28556589 [TBL] [Abstract][Full Text] [Related]
39. One- and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift. Zhang X; Ren X; Xu QH; Loh KP; Chen ZK Org Lett; 2009 Mar; 11(6):1257-60. PubMed ID: 19236043 [TBL] [Abstract][Full Text] [Related]
40. A dual-site fluorescent probe for direct and highly selective detection of cysteine and its application in living cells. Wang P; Wang Q; Huang J; Li N; Gu Y Biosens Bioelectron; 2017 Jun; 92():583-588. PubMed ID: 27829568 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]