BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23008269)

  • 21. Cellular localization of ephrin-A2, ephrin-A5, and other functional guidance cues underlies retinotopic development across species.
    Davenport RW; Thies E; Zhou R; Nelson PG
    J Neurosci; 1998 Feb; 18(3):975-86. PubMed ID: 9437019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A stochastic model for retinocollicular map development.
    Koulakov AA; Tsigankov DN
    BMC Neurosci; 2004 Aug; 5():30. PubMed ID: 15339341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ephrin-A5 modulates the topographic mapping and connectivity of commissural axons in murine hippocampus.
    Otal R; Burgaya F; Frisén J; Soriano E; Martínez A
    Neuroscience; 2006 Aug; 141(1):109-21. PubMed ID: 16690216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Key roles of Ephs and ephrins in retinotectal topographic map formation.
    Scicolone G; Ortalli AL; Carri NG
    Brain Res Bull; 2009 Jun; 79(5):227-47. PubMed ID: 19480983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system.
    Frisén J; Yates PA; McLaughlin T; Friedman GC; O'Leary DD; Barbacid M
    Neuron; 1998 Feb; 20(2):235-43. PubMed ID: 9491985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CBF1 controls the retinotectal topographical map along the anteroposterior axis through multiple mechanisms.
    Takahashi H; Shintani T; Sakuta H; Noda M
    Development; 2003 Nov; 130(21):5203-15. PubMed ID: 12954716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis.
    Higenell V; Han SM; Feldheim DA; Scalia F; Ruthazer ES
    Dev Neurobiol; 2012 Apr; 72(4):547-63. PubMed ID: 21656698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced plasticity of retinothalamic projections in an ephrin-A2/A5 double mutant.
    Lyckman AW; Jhaveri S; Feldheim DA; Vanderhaeghen P; Flanagan JG; Sur M
    J Neurosci; 2001 Oct; 21(19):7684-90. PubMed ID: 11567058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential expression of Eph receptors and ephrins correlates with the formation of topographic projections in primary and secondary visual circuits of the embryonic chick forebrain.
    Marín O; Blanco MJ; Nieto MA
    Dev Biol; 2001 Jun; 234(2):289-303. PubMed ID: 11397000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein Tyrosine Phosphatase Receptor Type J (PTPRJ) Regulates Retinal Axonal Projections by Inhibiting Eph and Abl Kinases in Mice.
    Yu Y; Shintani T; Takeuchi Y; Shirasawa T; Noda M
    J Neurosci; 2018 Sep; 38(39):8345-8363. PubMed ID: 30082414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ephrin-As are required for the topographic mapping but not laminar choice of physiologically distinct RGC types.
    Sweeney NT; James KN; Sales EC; Feldheim DA
    Dev Neurobiol; 2015 Jun; 75(6):584-93. PubMed ID: 25649160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ephrin-A6, a new ligand for EphA receptors in the developing visual system.
    Menzel P; Valencia F; Godement P; Dodelet VC; Pasquale EB
    Dev Biol; 2001 Feb; 230(1):74-88. PubMed ID: 11161563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of Ten-m3 in the retina alters ipsilateral retinocollicular projections in the wallaby (Macropus eugenii).
    Carr OP; Glendining KA; Leamey CA; Marotte LR
    Int J Dev Neurosci; 2013 Nov; 31(7):496-504. PubMed ID: 23747822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eph and ephrin signaling in the formation of topographic maps.
    Triplett JW; Feldheim DA
    Semin Cell Dev Biol; 2012 Feb; 23(1):7-15. PubMed ID: 22044886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EphA receptors and ephrin-A ligands exhibit highly regulated spatial and temporal expression patterns in the developing olfactory system.
    St John JA; Pasquale EB; Key B
    Brain Res Dev Brain Res; 2002 Sep; 138(1):1-14. PubMed ID: 12234653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New model of retinocollicular mapping predicts the mechanisms of axonal competition and explains the role of reverse molecular signaling during development.
    Grimbert F; Cang J
    J Neurosci; 2012 Jul; 32(28):9755-68. PubMed ID: 22787061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative assessment of computational models for retinotopic map formation.
    Hjorth JJ; Sterratt DC; Cutts CS; Willshaw DJ; Eglen SJ
    Dev Neurobiol; 2015 Jun; 75(6):641-66. PubMed ID: 25367067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of ephrin-A ligands and EphA receptors in the developing mouse tooth and its supporting tissues.
    Luukko K; Løes S; Kvinnsland IH; Kettunen P
    Cell Tissue Res; 2005 Jan; 319(1):143-52. PubMed ID: 15517401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gradients of ephrin-A2 and ephrin-A5b mRNA during retinotopic regeneration of the optic projection in adult zebrafish.
    Becker CG; Meyer RL; Becker T
    J Comp Neurol; 2000 Nov; 427(3):469-83. PubMed ID: 11054707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A role for ephrin-As in maintaining topographic organization in register across interconnected central visual pathways.
    Wilks TA; Rodger J; Harvey AR
    Eur J Neurosci; 2010 Feb; 31(4):613-22. PubMed ID: 20384808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.