These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 23009162)
1. Electrochemical oxidation of pyrogallol: formation and characterization of long-lived oxygen radicals and application to assess the radical scavenging abilities of antioxidants. Mu S; Chen C J Phys Chem B; 2012 Oct; 116(41):12567-73. PubMed ID: 23009162 [TBL] [Abstract][Full Text] [Related]
2. Xanthine biosensor based on the direct oxidation of xanthine at an electrogenerated oligomer film. Mu S; Shi Q Biosens Bioelectron; 2013 Sep; 47():429-35. PubMed ID: 23612065 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study. Atala E; Velásquez G; Vergara C; Mardones C; Reyes J; Tapia RA; Quina F; Mendes MA; Speisky H; Lissi E; Ureta-Zañartu MS; Aspée A; López-Alarcón C J Phys Chem B; 2013 May; 117(17):4870-9. PubMed ID: 23528077 [TBL] [Abstract][Full Text] [Related]
4. Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. Li X J Agric Food Chem; 2012 Jun; 60(25):6418-24. PubMed ID: 22656066 [TBL] [Abstract][Full Text] [Related]
5. A reduced graphene oxide based electrochemical biosensor for tyrosine detection. Wei J; Qiu J; Li L; Ren L; Zhang X; Chaudhuri J; Wang S Nanotechnology; 2012 Aug; 23(33):335707. PubMed ID: 22863907 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate. Janegitz BC; dos Santos FA; Faria RC; Zucolotto V Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():14-9. PubMed ID: 24582217 [TBL] [Abstract][Full Text] [Related]
7. Fabrication phosphomolybdic acid-reduced graphene oxide nanocomposite by UV photo-reduction and its electrochemical properties. Chen J; Liu S; Feng W; Zhang G; Yang F Phys Chem Chem Phys; 2013 Apr; 15(15):5664-9. PubMed ID: 23474670 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical antioxidant detection technique based on guanine-bonded graphene and magnetic nanoparticles composite materials. Li P; Zhang W; Zhao J; Meng F; Yue Q; Wang L; Li H; Gu X; Zhang S; Liu J Analyst; 2012 Sep; 137(18):4318-26. PubMed ID: 22858541 [TBL] [Abstract][Full Text] [Related]
9. Long-lived radical cations as model compounds for the reactive one-electron oxidation product of vitamin E. Peng HM; Choules BF; Yao WW; Zhang Z; Webster RD; Gill PM J Phys Chem B; 2008 Aug; 112(33):10367-74. PubMed ID: 18661934 [TBL] [Abstract][Full Text] [Related]
10. Propofol reacts with peroxynitrite to form a phenoxyl radical: demonstration by electron spin resonance. Mouithys-Mickalad A; Hans P; Deby-Dupont G; Hoebeke M; Deby C; Lamy M Biochem Biophys Res Commun; 1998 Aug; 249(3):833-7. PubMed ID: 9731222 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the influence of hydroxy groups on the radical scavenging ability of polyphenols. Thavasi V; Leong LP; Bettens RP J Phys Chem A; 2006 Apr; 110(14):4918-23. PubMed ID: 16599462 [TBL] [Abstract][Full Text] [Related]
12. A planar catechin analogue having a more negative oxidation potential than (+)-catechin as an electron transfer antioxidant against a peroxyl radical. Nakanishi I; Ohkubo K; Miyazaki K; Hakamata W; Urano S; Ozawa T; Okuda H; Fukuzumi S; Ikota N; Fukuhara K Chem Res Toxicol; 2004 Jan; 17(1):26-31. PubMed ID: 14727916 [TBL] [Abstract][Full Text] [Related]
13. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation. Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604 [TBL] [Abstract][Full Text] [Related]
14. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Bektaşoğlu B; Esin Celik S; Ozyürek M; Güçlü K; Apak R Biochem Biophys Res Commun; 2006 Jul; 345(3):1194-200. PubMed ID: 16716257 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical oxidation behavior of colchicine on a graphene oxide-Nafion composite film modified glassy carbon electrode. Wang F; Zhou J; Liu Y; Wu S; Song G; Ye B Analyst; 2011 Oct; 136(19):3943-9. PubMed ID: 21808780 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Qiu Y; Wang Z; Owens AC; Kulaots I; Chen Y; Kane AB; Hurt RH Nanoscale; 2014 Oct; 6(20):11744-55. PubMed ID: 25157875 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M; Zhai Y; Dong S Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529 [TBL] [Abstract][Full Text] [Related]
18. A planar catechin analogue as a promising antioxidant with reduced prooxidant activity. Fukuhara K; Nakanishi I; Shimada T; Ohkubo K; Miyazaki K; Hakamata W; Urano S; Ozawa T; Okuda H; Miyata N; Ikota N; Fukuzumi S Chem Res Toxicol; 2003 Jan; 16(1):81-6. PubMed ID: 12693034 [TBL] [Abstract][Full Text] [Related]
19. Optimization of Pyrogallol Autoxidation Conditions and Its Application in Evaluation of Superoxide Anion Radical Scavenging Capacity for Four Antioxidants. Zhang QA; Wang X; Song Y; Fan XH; García Martín JF J AOAC Int; 2016; 99(2):504-11. PubMed ID: 26997318 [TBL] [Abstract][Full Text] [Related]
20. Evidence for a lack of reactivity of carotenoid addition radicals towards oxygen: a laser flash photolysis study of the reactions of carotenoids with acylperoxyl radicals in polar and non-polar solvents. El-Agamey A; McGarvey DJ J Am Chem Soc; 2003 Mar; 125(11):3330-40. PubMed ID: 12630889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]