These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23009182)

  • 1. Polymer-composite materials for radiation protection.
    Nambiar S; Yeow JT
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5717-26. PubMed ID: 23009182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Brief Review on the High-Energy Electromagnetic Radiation-Shielding Materials Based on Polymer Nanocomposites.
    Acevedo-Del-Castillo A; Águila-Toledo E; Maldonado-Magnere S; Aguilar-Bolados H
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence resonance energy transfer in conjugated polymer composites for radiation detection.
    Zhao YS; Zhong H; Pei Q
    Phys Chem Chem Phys; 2008 Apr; 10(14):1848-51. PubMed ID: 18368175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emission of fluorescent x-radiation from non-lead based shielding materials of protective clothing: a radiobiological problem?
    Schmid E; Panzer W; Schlattl H; Eder H
    J Radiol Prot; 2012 Sep; 32(3):N129-39. PubMed ID: 22809876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel shielding materials for space and air travel.
    Vana N; Hajek M; Berger T; Fugger M; Hofmann P
    Radiat Prot Dosimetry; 2006; 120(1-4):405-9. PubMed ID: 16717109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation protection using Martian surface materials in human exploration of Mars.
    Kim MH; Thibeault SA; Wilson JW; Heilbronn L; Kiefer RL; Weakley JA; Dueber JL; Fogarty T; Wilkins R
    Phys Med; 2001; 17 Suppl 1():81-3. PubMed ID: 11770542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites.
    Yang Y; Guptal MC; Dudley KL; Lawrence RW
    J Nanosci Nanotechnol; 2007 Feb; 7(2):549-54. PubMed ID: 17450793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: effect of particle size, photon energy and nano-particle concentration.
    Mansouri E; Mesbahi A; Malekzadeh R; Mansouri A
    Radiat Environ Biophys; 2020 Nov; 59(4):583-600. PubMed ID: 32780196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on polymer composites with glass for gamma ray shielding.
    Chikkegowda A; Adarsh Raj L; Belur Mohan S; Krishnaveni S
    Radiat Prot Dosimetry; 2024 Jul; 200(11-12):1233-1236. PubMed ID: 39016503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of active methods for shielding spacecraft from energetic space radiation.
    Townsend LW
    Phys Med; 2001; 17 Suppl 1():84-5. PubMed ID: 11770543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space radiation transport properties of polyethylene-based composites.
    Kaul RK; Barghouty AF; Dahche HM
    Ann N Y Acad Sci; 2004 Nov; 1027():138-49. PubMed ID: 15644352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modeling of the radiation dose received from photons passing over and through shielding walls in a PET/CT suite.
    Fog LS; Cormack J
    Health Phys; 2010 Dec; 99(6):769-79. PubMed ID: 21068595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human exposure to space radiation: role of primary and secondary particles.
    Trovati S; Ballarini F; Battistoni G; Cerutti F; Fassò A; Ferrari A; Gadioli E; Garzelli MV; Mairani A; Ottolenghi A; Paretzke HG; Parini V; Pelliccioni M; Pinsky L; Sala PR; Scannicchio D; Zankl M
    Radiat Prot Dosimetry; 2006; 122(1-4):362-6. PubMed ID: 17151013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Cu/Zn Reinforced Polymer Composites: Experimental Characterization for Radiation Protection Efficiency (RPE) and Shielding Properties for Alpha, Proton, Neutron, and Gamma Radiations.
    ALMisned G; Akman F; AbuShanab WS; Tekin HO; Kaçal MR; Issa SAM; Polat H; Oltulu M; Ene A; Zakaly HMH
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of Gamma Radiation Using ClearView Radiation ShieldingTM in Nuclear Power Plants, Hospitals and Radiopharmacies.
    Bakshi J; Chu BP
    Health Phys; 2020 Dec; 119(6):776-785. PubMed ID: 32897986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of dose savings of lead and lightweight aprons for shielding of 99m-Technetium radiation.
    Warren-Forward H; Cardew P; Smith B; Clack L; McWhirter K; Johnson S; Wessel K
    Radiat Prot Dosimetry; 2007; 124(2):89-96. PubMed ID: 17525062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of non-lead-based protective radiological material in spinal surgery.
    Scuderi GJ; Brusovanik GV; Campbell DR; Henry RP; Kwon B; Vaccaro AR
    Spine J; 2006; 6(5):577-82. PubMed ID: 16934731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Optimizing staff radiation protection in radiology by minimizing the effective dose].
    von Boetticher H; Lachmund J; Hoffmann W; Luska G
    Rofo; 2006 Mar; 178(3):287-91. PubMed ID: 16508835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal per cent by weight of elements in diagnostic quality radiation shielding materials.
    Ashayer S; Askari M; Afarideh H
    Radiat Prot Dosimetry; 2012 Apr; 149(3):268-88. PubMed ID: 21705365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Description of transport codes for space radiation shielding.
    Kim MH; Wilson JW; Cucinotta FA
    Health Phys; 2012 Nov; 103(5):621-39. PubMed ID: 23032892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.