BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23009288)

  • 1. High density trans-admittance mammography development and preliminary phantom tests.
    Zhao M; Wi H; Mostofa Kamal AH; McEwan AL; Woo EJ; Oh TI
    Biomed Eng Online; 2012 Sep; 11():75. PubMed ID: 23009288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of anomaly detection and characterization using trans-admittance mammography with 60 × 60 electrode array.
    Zhao M; Wi H; Lee EJ; Woo EJ; Oh TI
    Phys Med Biol; 2014 Oct; 59(19):5831-47. PubMed ID: 25207623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A feasibility study of a rotary planar electrode array for electrical impedance mammography using a digital breast phantom.
    Zhang X; Chatwin C; Barber DC
    Physiol Meas; 2015 Jun; 36(6):1311-35. PubMed ID: 26007201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of breast cancer lesion detection using a multi-frequency trans-admittance scanner (TAS) with 10 Hz to 500 kHz bandwidth.
    Oh TI; Lee J; Seo JK; Kim SW; Woo EJ
    Physiol Meas; 2007 Jul; 28(7):S71-84. PubMed ID: 17664649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-frequency EIT system with radially symmetric architecture: KHU Mark1.
    Oh TI; Woo EJ; Holder D
    Physiol Meas; 2007 Jul; 28(7):S183-96. PubMed ID: 17664635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: a simulation study with an anthropomorphic breast phantom.
    Liu X; Lai CJ; Whitman GJ; Geiser WR; Shen Y; Yi Y; Shaw CC
    Med Phys; 2011 Dec; 38(12):6489-501. PubMed ID: 22149832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of a PSPMT based detector for scintimammography.
    Williams MB; Williams MB; Goode AR; Galbis-Reig V; Majewski S; Weisenberger AG; Wojcik R
    Phys Med Biol; 2000 Mar; 45(3):781-800. PubMed ID: 10730971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of anomaly detection algorithm using trans-admittance mammography with 60 × 60 electrode array.
    Zhao M; Wi H; Oh TI; Woo EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6433-6. PubMed ID: 24111214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.
    Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z
    Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method of measuring NEQ as a quality control metric for digital mammography.
    Bloomquist AK; Mainprize JG; Mawdsley GE; Yaffe MJ
    Med Phys; 2014 Mar; 41(3):031905. PubMed ID: 24593723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of the dose and image quality characteristics of a digital mammography imaging system.
    Huda W; Sajewicz AM; Ogden KM; Dance DR
    Med Phys; 2003 Mar; 30(3):442-8. PubMed ID: 12674245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully parallel multi-frequency EIT system with flexible electrode configuration: KHU Mark2.
    Oh TI; Wi H; Kim DY; Yoo PJ; Woo EJ
    Physiol Meas; 2011 Jul; 32(7):835-49. PubMed ID: 21646706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative power law analysis of structured breast phantom and patient images in digital mammography and breast tomosynthesis.
    Cockmartin L; Bosmans H; Marshall NW
    Med Phys; 2013 Aug; 40(8):081920. PubMed ID: 23927334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-channel bioimpedance spectroscopy based on orthogonal baseband shifting.
    Menden T; Rumpf M; Korn L; Leonhardt S; Walter M
    Physiol Meas; 2021 Jun; 42(6):. PubMed ID: 34020443
    [No Abstract]   [Full Text] [Related]  

  • 15. Optimal photon energy comparison between digital breast tomosynthesis and mammography: a case study.
    Di Maria S; Baptista M; Felix M; Oliveira N; Matela N; Janeiro L; Vaz P; Orvalho L; Silva A
    Phys Med; 2014 Jun; 30(4):482-8. PubMed ID: 24613514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Analog Front End ASIC for Cardiac Electrical Impedance Tomography.
    Rao A; Teng YC; Schaef C; Murphy EK; Arshad S; Halter RJ; Odame K
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):729-738. PubMed ID: 29994267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental investigation of computed tomography sound velocity reconstruction using incomplete data.
    Huang SW; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Sep; 51(9):1072-81. PubMed ID: 15478969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Power Adaptive, 1.22-pW/Hz, 10-MHz Read-Out Front-End for Bio-Impedance Measurement.
    Takhti M; Odame K
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):725-734. PubMed ID: 31135369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistically defined anthropomorphic software breast phantom.
    Lau BA; Reiser I; Nishikawa RM; Bakic PR
    Med Phys; 2012 Jun; 39(6):3375-85. PubMed ID: 22755718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.