These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23009361)

  • 1. Computational modeling of the mechanical modulation of the growth plate by sustained loading.
    Narváez-Tovar CA; Garzón-Alvarado DA
    Theor Biol Med Model; 2012 Sep; 9():41. PubMed ID: 23009361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling of growth plate cartilage mechanobiology.
    Gao J; Williams JL; Roan E
    Biomech Model Mechanobiol; 2017 Apr; 16(2):667-679. PubMed ID: 27770213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular scale model of growth plate: An in silico model of chondrocyte hypertrophy.
    Castro-Abril HA; Guevara JM; Moncayo MA; Shefelbine SJ; Barrera LA; Garzón-Alvarado DA
    J Theor Biol; 2017 Sep; 428():87-97. PubMed ID: 28526527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth plate mechanics and mechanobiology. A survey of present understanding.
    Villemure I; Stokes IA
    J Biomech; 2009 Aug; 42(12):1793-803. PubMed ID: 19540500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enlargement of growth plate chondrocytes modulated by sustained mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    J Bone Joint Surg Am; 2002 Oct; 84(10):1842-8. PubMed ID: 12377917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ deformation of growth plate chondrocytes in stress-controlled static vs dynamic compression.
    Zimmermann EA; Bouguerra S; Londoño I; Moldovan F; Aubin CÉ; Villemure I
    J Biomech; 2017 May; 56():76-82. PubMed ID: 28365062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in the growth plate associated with growth modulation by sustained compression or distraction.
    Stokes IA; Clark KC; Farnum CE; Aronsson DD
    Bone; 2007 Aug; 41(2):197-205. PubMed ID: 17532281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondrocyte hypertrophy in the growth plate: a short communication on probable mechanism.
    Oni OO
    Afr J Med Med Sci; 1999; 28(1-2):117-9. PubMed ID: 12954000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressive mechanical modulation alters the viability of growth plate chondrocytes in vitro.
    Kaviani R; Londono I; Parent S; Moldovan F; Villemure I
    J Orthop Res; 2015 Nov; 33(11):1587-93. PubMed ID: 26019113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo dynamic loading reduces bone growth without histomorphometric changes of the growth plate.
    Ménard AL; Grimard G; Valteau B; Londono I; Moldovan F; Villemure I
    J Orthop Res; 2014 Sep; 32(9):1129-36. PubMed ID: 24902946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification.
    Mackie EJ; Tatarczuch L; Mirams M
    J Endocrinol; 2011 Nov; 211(2):109-21. PubMed ID: 21642379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of mechanical loading on the metabolism of growth plate chondrocytes.
    Ueki M; Tanaka N; Tanimoto K; Nishio C; Honda K; Lin YY; Tanne Y; Ohkuma S; Kamiya T; Tanaka E; Tanne K
    Ann Biomed Eng; 2008 May; 36(5):793-800. PubMed ID: 18278554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the resting zone in growth plate chondrogenesis.
    Abad V; Meyers JL; Weise M; Gafni RI; Barnes KM; Nilsson O; Bacher JD; Baron J
    Endocrinology; 2002 May; 143(5):1851-7. PubMed ID: 11956168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relating the chondrocyte gene network to growth plate morphology: from genes to phenotype.
    Kerkhofs J; Roberts SJ; Luyten FP; Van Oosterwyck H; Geris L
    PLoS One; 2012; 7(4):e34729. PubMed ID: 22558096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary ossification center induces and protects growth plate structure.
    Xie M; Gol'din P; Herdina AN; Estefa J; Medvedeva EV; Li L; Newton PT; Kotova S; Shavkuta B; Saxena A; Shumate LT; Metscher BD; Großschmidt K; Nishimori S; Akovantseva A; Usanova AP; Kurenkova AD; Kumar A; Arregui IL; Tafforeau P; Fried K; Carlström M; Simon A; Gasser C; Kronenberg HM; Bastepe M; Cooper KL; Timashev P; Sanchez S; Adameyko I; Eriksson A; Chagin AS
    Elife; 2020 Oct; 9():. PubMed ID: 33063669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The domain of hypertrophic chondrocytes in growth plates growing at different rates.
    Breur GJ; Lapierre MD; Kazmierczak K; Stechuchak KM; McCabe GP
    Calcif Tissue Int; 1997 Nov; 61(5):418-25. PubMed ID: 9351885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endochondral ossification and the evolution of limb proportions.
    Rolian C
    Wiley Interdiscip Rev Dev Biol; 2020 Jul; 9(4):e373. PubMed ID: 31997553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BMP-5 deficiency alters chondrocytic activity in the mouse proximal tibial growth plate.
    Bailón-Plaza A; Lee AO; Veson EC; Farnum CE; van der Meulen MC
    Bone; 1999 Mar; 24(3):211-6. PubMed ID: 10071913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proliferation of the hypertrophic chondrocytes of the growth plate after physeal distraction. An experimental study in rabbits.
    Alberty A; Peltonen J
    Clin Orthop Relat Res; 1993 Dec; (297):7-11. PubMed ID: 8242954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of estrogen on growth plate senescence and epiphyseal fusion.
    Weise M; De-Levi S; Barnes KM; Gafni RI; Abad V; Baron J
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6871-6. PubMed ID: 11381135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.