These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 23009410)

  • 1. Discrete model combined with mimetic microfluidic chips to study cell growth in porous scaffold under flow conditions.
    Chabanon M; Duval H; Francais O; Lepioufle B; Perrin E; Goyeau B; David B
    Comput Methods Biomech Biomed Engin; 2012; 15 Suppl 1():25-6. PubMed ID: 23009410
    [No Abstract]   [Full Text] [Related]  

  • 2. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of osteoblastic cells in a microfluidic environment.
    Leclerc E; David B; Griscom L; Lepioufle B; Fujii T; Layrolle P; Legallaisa C
    Biomaterials; 2006 Feb; 27(4):586-95. PubMed ID: 16026825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of geometric challenges on cell migration.
    Mills RJ; Frith JE; Hudson JE; Cooper-White JJ
    Tissue Eng Part C Methods; 2011 Oct; 17(10):999-1010. PubMed ID: 21631399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem cells in microfluidics.
    van Noort D; Ong SM; Zhang C; Zhang S; Arooz T; Yu H
    Biotechnol Prog; 2009; 25(1):52-60. PubMed ID: 19205022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fabrication of scaffold with controlled porous structure and flow perfusion culture in vitro].
    Li X; Li DC; Wang L; Lu BH; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):579-83. PubMed ID: 16176096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ice-template-induced silk fibroin-chitosan scaffolds with predefined microfluidic channels and fully porous structures.
    Mao M; He J; Liu Y; Li X; Li D
    Acta Biomater; 2012 Jul; 8(6):2175-84. PubMed ID: 22269914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Microcanals" for micropipette access to single cells in microfluidic environments.
    Hsu CH; Chen C; Folch A
    Lab Chip; 2004 Oct; 4(5):420-4. PubMed ID: 15472724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryopreservation of fibroblasts immobilized within a porous scaffold: effects of preculture and collagen coating of scaffold on performance of three-dimensional cryopreservation.
    Miyoshi H; Ehashi T; Ohshima N; Jagawa A
    Artif Organs; 2010 Jul; 34(7):609-14. PubMed ID: 20497160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrorheological fluid and its applications in microfluidics.
    Wang L; Gong X; Wen W
    Top Curr Chem; 2011; 304():91-115. PubMed ID: 21528441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture.
    Zhou J; Ren K; Dai W; Zhao Y; Ryan D; Wu H
    Lab Chip; 2011 Jul; 11(13):2288-94. PubMed ID: 21603722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic single-cell mRNA isolation and analysis.
    Marcus JS; Anderson WF; Quake SR
    Anal Chem; 2006 May; 78(9):3084-9. PubMed ID: 16642997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor.
    McCoy RJ; Jungreuthmayer C; O'Brien FJ
    Biotechnol Bioeng; 2012 Jun; 109(6):1583-94. PubMed ID: 22249971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of microfluidic fuel cells using transport principles.
    Lee J; Lim KG; Palmore GT; Tripathi A
    Anal Chem; 2007 Oct; 79(19):7301-7. PubMed ID: 17727270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips.
    Jin Y; Luo GA
    Electrophoresis; 2003 Apr; 24(7-8):1242-52. PubMed ID: 12707918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel use of centrifugal force for cell seeding into porous scaffolds.
    Godbey WT; Hindy SB; Sherman ME; Atala A
    Biomaterials; 2004 Jun; 25(14):2799-805. PubMed ID: 14962558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology.
    Wang CC; Yang KC; Lin KH; Liu HC; Lin FH
    Biomaterials; 2011 Oct; 32(29):7118-26. PubMed ID: 21724248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The realistic prediction of oxygen transport in a tissue-engineered scaffold by introducing time-varying effective diffusion coefficients.
    Kang TY; Kang HW; Hwang CM; Lee SJ; Park J; Yoo JJ; Cho DW
    Acta Biomater; 2011 Sep; 7(9):3345-53. PubMed ID: 21642022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled assembly of heterotypic cells in a core-shell scaffold: organ in a droplet.
    Chen Q; Utech S; Chen D; Prodanovic R; Lin JM; Weitz DA
    Lab Chip; 2016 Apr; 16(8):1346-9. PubMed ID: 26999495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels.
    Khademhosseini A; Yeh J; Jon S; Eng G; Suh KY; Burdick JA; Langer R
    Lab Chip; 2004 Oct; 4(5):425-30. PubMed ID: 15472725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.