These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 2300980)

  • 81. Obligatory roles of protein kinase C and nitric oxide in the regulation of cerebral vascular tone: an implication of a pathogenesis of vasospasm after subarachnoid haemorrhage.
    Nishizawa S; Yokota N; Yokoyama T; Uemura K
    Acta Neurochir (Wien); 1998; 140(10):1063-8. PubMed ID: 9856250
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Systemic administration of the potassium channel activator cromakalim attenuates cerebral vasospasm after experimental subarachnoid hemorrhage.
    Kwan AL; Lin CL; Yanamoto H; Howng SL; Kassell NF; Lee KS
    Neurosurgery; 1998 Feb; 42(2):347-50; discussion 350-1. PubMed ID: 9482186
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Phosphatidylinositol 3-kinase inhibitor failed to reduce cerebral vasospasm in dog model of experimental subarachnoid hemorrhage.
    Kimura H; Sasaki K; Meguro T; Zhang JH
    Stroke; 2002 Feb; 33(2):593-9. PubMed ID: 11823675
    [TBL] [Abstract][Full Text] [Related]  

  • 84. [Cerebral vasospasm: comparison of contractile responses in isolated human and canine basilar arteries].
    Tanishima T
    No To Shinkei; 1983 Apr; 35(4):323-9. PubMed ID: 6575794
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Morphological changes of cerebral arteries in a canine double hemorrhage model.
    Zubkov AY; Tibbs RE; Clower B; Ogihara K; Aoki K; Zhang JH
    Neurosci Lett; 2002 Jun; 326(2):137-41. PubMed ID: 12057847
    [TBL] [Abstract][Full Text] [Related]  

  • 86. An endothelin ETA receptor antagonist, FR139317, ameliorates cerebral vasospasm in dogs.
    Nirei H; Hamada K; Shoubo M; Sogabe K; Notsu Y; Ono T
    Life Sci; 1993; 52(23):1869-74. PubMed ID: 8318117
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Cyclosporine A for the prevention of neurological deficit following subarachnoid hemorrhage.
    Ryba M; Grieb P; Bidzinski J; Pastuszko M; Dziewiecki C; Iwanska K
    Stroke; 1991 Apr; 22(4):531. PubMed ID: 2024283
    [No Abstract]   [Full Text] [Related]  

  • 88. Role of oxidized LDL and lectin-like oxidized LDL receptor-1 in cerebral vasospasm after subarachnoid hemorrhage.
    Matsuda N; Ohkuma H; Naraoka M; Munakata A; Shimamura N; Asano K
    J Neurosurg; 2014 Sep; 121(3):621-30. PubMed ID: 24949677
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Protein kinase C and diacylglycerol content in basilar arteries during experimental cerebral vasospasm in the dog.
    Yokota M; Peterson JW; Kaoutzanis MC; Yamakawa K; Sibilia R; Zervas NT
    J Neurosurg; 1995 May; 82(5):834-40. PubMed ID: 7714610
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Prevention of chronic cerebral vasospasm in dogs with ibuprofen and high-dose methylprednisolone.
    Chyatte D
    Stroke; 1989 Aug; 20(8):1021-6. PubMed ID: 2756534
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Clentiazem protects against chronic cerebral vasospasm in rabbit basilar artery.
    Vorkapic P; Bevan JA; Bevan RD
    Stroke; 1991 Nov; 22(11):1409-13. PubMed ID: 1750049
    [TBL] [Abstract][Full Text] [Related]  

  • 92. [Cerebral vasospasm following subarachnoid hemorrhage as studied from the mechanism of physiological smooth muscle contraction].
    Sakaki S; Ohta S
    No Shinkei Geka; 1996 Jan; 24(1):19-28. PubMed ID: 8559260
    [No Abstract]   [Full Text] [Related]  

  • 93. Cytoskeletal and extracellular matrix proteins in cerebral arteries following subarachnoid hemorrhage in monkeys.
    Macdonald RL; Weir BK; Young JD; Grace MG
    J Neurosurg; 1992 Jan; 76(1):81-90. PubMed ID: 1727173
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Relation between protein kinase C and calmodulin systems in cerebrovascular contraction: investigation of the pathogenesis of vasospasm after subarachnoid hemorrhage.
    Nishizawa S; Peterson JW; Shimoyama I; Uemura K
    Neurosurgery; 1992 Oct; 31(4):711-6. PubMed ID: 1407457
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Temporal profile and significance of metabolic failure and trophic changes in the canine cerebral arteries during chronic vasospasm after subarachnoid hemorrhage.
    Yoshimoto Y; Kim P; Sasaki T; Takakura K
    J Neurosurg; 1993 May; 78(5):807-12. PubMed ID: 8468611
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Evaluation of the role hemoglobin in cerebrospinal fluid plays in producing contractions of cerebral arteries.
    White RP; Macleod RM; Muhlbauer MS
    Surg Neurol; 1987 Mar; 27(3):237-42. PubMed ID: 3810455
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Antioxidant therapy against cerebral vasospasm following aneurysmal subarachnoid hemorrhage.
    Asano T; Matsui T
    Cell Mol Neurobiol; 1999 Feb; 19(1):31-44. PubMed ID: 10079963
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Activation of the protein kinase C-mediated contractile system in canine basilar artery undergoing chronic vasospasm.
    Matsui T; Sugawa M; Johshita H; Takuwa Y; Asano T
    Stroke; 1991 Sep; 22(9):1183-7. PubMed ID: 1926262
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Loss of relaxations, metabolic failure and increased calcium permeability of smooth muscle during chronic cerebral vasospasm.
    Kim P
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S157-62. PubMed ID: 7836674
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Biomechanical study on aging changes and vasospasm of human cerebral arteries.
    Nagasawa S; Handa H; Naruo Y; Okumura A; Moritake K; Hayashi K
    Biorheology; 1982; 19(3):481-9. PubMed ID: 7104485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.