BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 23009807)

  • 1. Evaluation of structural features in fungal cytochromes P450 predicted to rule catalytic diversification.
    Hlavica P
    Biochim Biophys Acta; 2013 Jan; 1834(1):205-20. PubMed ID: 23009807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect cytochromes P450: topology of structural elements predicted to govern catalytic versatility.
    Hlavica P
    J Inorg Biochem; 2011 Oct; 105(10):1354-64. PubMed ID: 21930014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative biotransformation of fatty acids by cytochromes P450: predicted key structural elements orchestrating substrate specificity, regioselectivity and catalytic efficiency.
    Hlavica P; Lehnerer M
    Curr Drug Metab; 2010 Jan; 11(1):85-104. PubMed ID: 20302567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture.
    Hlavica P
    J Inorg Biochem; 2017 Feb; 167():100-115. PubMed ID: 27919007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction of nitrogenous organic bases with cytochrome P450: a critical assessment and update of substrate features and predicted key active-site elements steering the access, binding, and orientation of amines.
    Hlavica P
    Biochim Biophys Acta; 2006 Apr; 1764(4):645-70. PubMed ID: 16503427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and interactions of Aspergillus fumigatus lanosterol 14-alpha demethylase 'A' with azole antifungals.
    Gollapudy R; Ajmani S; Kulkarni SA
    Bioorg Med Chem; 2004 Jun; 12(11):2937-50. PubMed ID: 15142553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochromes P450: a success story.
    Werck-Reichhart D; Feyereisen R
    Genome Biol; 2000; 1(6):REVIEWS3003. PubMed ID: 11178272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for communality in the primary determinants of CYP74 catalysis and of structural similarities between CYP74 and classical mammalian P450 enzymes.
    Hughes RK; Yousafzai FK; Ashton R; Chechetkin IR; Fairhurst SA; Hamberg M; Casey R
    Proteins; 2008 Sep; 72(4):1199-211. PubMed ID: 18338380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF.
    Cupp-Vickery JR; Garcia C; Hofacre A; McGee-Estrada K
    J Mol Biol; 2001 Aug; 311(1):101-10. PubMed ID: 11469860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization.
    Hlavica P
    J Inorg Biochem; 2023 Apr; 241():112150. PubMed ID: 36731371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome P450 of fungi: primary target for azole antifungal agents.
    Yoshida Y
    Curr Top Med Mycol; 1988; 2():388-418. PubMed ID: 3288361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile biocatalysis of fungal cytochrome P450 monooxygenases.
    Durairaj P; Hur JS; Yun H
    Microb Cell Fact; 2016 Jul; 15(1):125. PubMed ID: 27431996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P450 enzymes in the fungal kingdom.
    Crešnar B; Petrič S
    Biochim Biophys Acta; 2011 Jan; 1814(1):29-35. PubMed ID: 20619366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal P
    Hussain R; Ahmed M; Khan TA; Akhter Y
    Appl Microbiol Biotechnol; 2020 Feb; 104(3):989-999. PubMed ID: 31858195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs.
    Hlavica P
    Adv Exp Med Biol; 2015; 851():247-97. PubMed ID: 26002739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal cytochrome p450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin.
    Chen W; Lee MK; Jefcoate C; Kim SC; Chen F; Yu JH
    Genome Biol Evol; 2014 Jun; 6(7):1620-34. PubMed ID: 24966179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and homology modelling of sterol 14alpha-demethylase of Magnaporthe grisea and its interaction with azoles.
    Yang J; Zhang Q; Liao M; Xiao M; Xiao W; Yang S; Wan J
    Pest Manag Sci; 2009 Mar; 65(3):260-5. PubMed ID: 19152375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: identification of evolutionarily conserved amino acid patterns characteristic of P450 family.
    Syed K; Mashele SS
    PLoS One; 2014; 9(4):e95616. PubMed ID: 24743800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation in cytochrome P-450-dependent 14 alpha-demethylase results in decreased affinity for azole antifungals.
    Vanden Bossche H; Marichal P; Gorrens J; Bellens D; Moereels H; Janssen PA
    Biochem Soc Trans; 1990 Feb; 18(1):56-9. PubMed ID: 2185088
    [No Abstract]   [Full Text] [Related]  

  • 20. Conformational states of cytochrome P450cam revealed by trapping of synthetic molecular wires.
    Hays AM; Dunn AR; Chiu R; Gray HB; Stout CD; Goodin DB
    J Mol Biol; 2004 Nov; 344(2):455-69. PubMed ID: 15522298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.