These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 23009834)
1. Dynamic organization of transcription compartments is dependent on functional nuclear architecture. Maharana S; Sharma D; Shi X; Shivashankar GV Biophys J; 2012 Sep; 103(5):851-9. PubMed ID: 23009834 [TBL] [Abstract][Full Text] [Related]
2. Probing the dynamic organization of transcription compartments and gene loci within the nucleus of living cells. Sinha DK; Banerjee B; Maharana S; Shivashankar GV Biophys J; 2008 Dec; 95(11):5432-8. PubMed ID: 18805931 [TBL] [Abstract][Full Text] [Related]
3. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. Wansink DG; Schul W; van der Kraan I; van Steensel B; van Driel R; de Jong L J Cell Biol; 1993 Jul; 122(2):283-93. PubMed ID: 8320255 [TBL] [Abstract][Full Text] [Related]
4. Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Cmarko D; Verschure PJ; Martin TE; Dahmus ME; Krause S; Fu XD; van Driel R; Fakan S Mol Biol Cell; 1999 Jan; 10(1):211-23. PubMed ID: 9880337 [TBL] [Abstract][Full Text] [Related]
5. Functional organization of RNA polymerase II in nuclear subcompartments. Rippe K; Papantonis A Curr Opin Cell Biol; 2022 Feb; 74():88-96. PubMed ID: 35217398 [TBL] [Abstract][Full Text] [Related]
6. Active RNA polymerases are localized within discrete transcription "factories' in human nuclei. Iborra FJ; Pombo A; Jackson DA; Cook PR J Cell Sci; 1996 Jun; 109 ( Pt 6)():1427-36. PubMed ID: 8799830 [TBL] [Abstract][Full Text] [Related]
7. Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. Francis J; Chakrabarti SK; Garmey JC; Mirmira RG J Biol Chem; 2005 Oct; 280(43):36244-53. PubMed ID: 16141209 [TBL] [Abstract][Full Text] [Related]
8. Chromatin domains and nuclear compartments: establishing sites of gene expression in eukaryotic nuclei. Jackson DA Mol Biol Rep; 1997 Aug; 24(3):209-20. PubMed ID: 9291094 [TBL] [Abstract][Full Text] [Related]
9. Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity. Kinyamu HK; Bennett BD; Bushel PR; Archer TK J Biol Chem; 2020 Jan; 295(5):1271-1287. PubMed ID: 31806706 [TBL] [Abstract][Full Text] [Related]
10. Visualization of focal sites of transcription within human nuclei. Jackson DA; Hassan AB; Errington RJ; Cook PR EMBO J; 1993 Mar; 12(3):1059-65. PubMed ID: 8458323 [TBL] [Abstract][Full Text] [Related]
11. Active site labeling of Escherichia coli transcription elongation complexes with 5-[4-azidophenacyl)thio)uridine 5'-triphosphate. Dissinger S; Hanna MM J Biol Chem; 1990 May; 265(13):7662-8. PubMed ID: 1692025 [TBL] [Abstract][Full Text] [Related]
12. Localized Inhibition of Protein Phosphatase 1 by NUAK1 Promotes Spliceosome Activity and Reveals a MYC-Sensitive Feedback Control of Transcription. Cossa G; Roeschert I; Prinz F; Baluapuri A; Silveira Vidal R; Schülein-Völk C; Chang YC; Ade CP; Mastrobuoni G; Girard C; Wortmann L; Walz S; Lührmann R; Kempa S; Kuster B; Wolf E; Mumberg D; Eilers M Mol Cell; 2020 Mar; 77(6):1322-1339.e11. PubMed ID: 32006464 [TBL] [Abstract][Full Text] [Related]
13. [Localization with BrUTP labeling technique of RNA polymerase II transcription in meristematic cells of Allium cepa]. Hu B; Xing M Shi Yan Sheng Wu Xue Bao; 1999 Jun; 32(2):185-95. PubMed ID: 12548785 [TBL] [Abstract][Full Text] [Related]
14. Reduced mobility of the alternate splicing factor (ASF) through the nucleoplasm and steady state speckle compartments. Kruhlak MJ; Lever MA; Fischle W; Verdin E; Bazett-Jones DP; Hendzel MJ J Cell Biol; 2000 Jul; 150(1):41-51. PubMed ID: 10893255 [TBL] [Abstract][Full Text] [Related]
15. Spatially coherent diffusion of human RNA Pol II depends on transcriptional state rather than chromatin motion. Barth R; Shaban HA Nucleus; 2022 Dec; 13(1):194-202. PubMed ID: 35723020 [TBL] [Abstract][Full Text] [Related]
16. Nuclear organization of RNA polymerase II transcription. Davidson S; Macpherson N; Mitchell JA Biochem Cell Biol; 2013 Feb; 91(1):22-30. PubMed ID: 23442138 [TBL] [Abstract][Full Text] [Related]
17. Nuclear architecture by RNA. Caudron-Herger M; Rippe K Curr Opin Genet Dev; 2012 Apr; 22(2):179-87. PubMed ID: 22281031 [TBL] [Abstract][Full Text] [Related]
18. Direct visualization of cardiac transcription factories reveals regulatory principles of nuclear architecture during pathological remodeling. Karbassi E; Rosa-Garrido M; Chapski DJ; Wu Y; Ren S; Wang Y; Stefani E; Vondriska TM J Mol Cell Cardiol; 2019 Mar; 128():198-211. PubMed ID: 30742811 [TBL] [Abstract][Full Text] [Related]
19. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. Ping YH; Rana TM J Biol Chem; 2001 Apr; 276(16):12951-8. PubMed ID: 11112772 [TBL] [Abstract][Full Text] [Related]
20. Nuclear patterns of phosphatidylinositol 4,5- and 3,4-bisphosphate revealed by super-resolution microscopy differ between the consecutive stages of RNA polymerase II transcription. Hoboth P; Sztacho M; Hozák P FEBS J; 2024 Oct; 291(19):4240-4264. PubMed ID: 38734927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]