These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23009834)

  • 21. CREB-binding protein (CBP)/p300 and RNA polymerase II colocalize in transcriptionally active domains in the nucleus.
    von Mikecz A; Zhang S; Montminy M; Tan EM; Hemmerich P
    J Cell Biol; 2000 Jul; 150(1):265-73. PubMed ID: 10893273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iwr1 facilitates RNA polymerase II dynamics during transcription elongation.
    Gómez-Navarro N; Peiró-Chova L; Estruch F
    Biochim Biophys Acta Gene Regul Mech; 2017 Jul; 1860(7):803-811. PubMed ID: 28258010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mapping the Dynamics of the Glucocorticoid Receptor within the Nuclear Landscape.
    Stortz M; Presman DM; Bruno L; Annibale P; Dansey MV; Burton G; Gratton E; Pecci A; Levi V
    Sci Rep; 2017 Jul; 7(1):6219. PubMed ID: 28740156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.
    Cremer T; Kreth G; Koester H; Fink RH; Heintzmann R; Cremer M; Solovei I; Zink D; Cremer C
    Crit Rev Eukaryot Gene Expr; 2000; 10(2):179-212. PubMed ID: 11186332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Live imaging of transcription sites using an elongating RNA polymerase II-specific probe.
    Uchino S; Ito Y; Sato Y; Handa T; Ohkawa Y; Tokunaga M; Kimura H
    J Cell Biol; 2022 Feb; 221(2):. PubMed ID: 34854870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid reversible changes in compartments and local chromatin organization revealed by hyperosmotic shock.
    Amat R; Böttcher R; Le Dily F; Vidal E; Quilez J; Cuartero Y; Beato M; de Nadal E; Posas F
    Genome Res; 2019 Jan; 29(1):18-28. PubMed ID: 30523037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing.
    Nojima T; Gomes T; Grosso ARF; Kimura H; Dye MJ; Dhir S; Carmo-Fonseca M; Proudfoot NJ
    Cell; 2015 Apr; 161(3):526-540. PubMed ID: 25910207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA Targets Ribogenesis Factor WDR43 to Chromatin for Transcription and Pluripotency Control.
    Bi X; Xu Y; Li T; Li X; Li W; Shao W; Wang K; Zhan G; Wu Z; Liu W; Lu JY; Wang L; Zhao J; Wu J; Na J; Li G; Li P; Shen X
    Mol Cell; 2019 Jul; 75(1):102-116.e9. PubMed ID: 31128943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ARS2/SRRT: at the nexus of RNA polymerase II transcription, transcript maturation and quality control.
    Lykke-Andersen S; Rouvière JO; Jensen TH
    Biochem Soc Trans; 2021 Jun; 49(3):1325-1336. PubMed ID: 34060620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging of DNA and RNA in Living Eukaryotic Cells to Reveal Spatiotemporal Dynamics of Gene Expression.
    Sato H; Das S; Singer RH; Vera M
    Annu Rev Biochem; 2020 Jun; 89():159-187. PubMed ID: 32176523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics and interplay of nuclear architecture, genome organization, and gene expression.
    Schneider R; Grosschedl R
    Genes Dev; 2007 Dec; 21(23):3027-43. PubMed ID: 18056419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An RNA-dependent and phase-separated active subnuclear compartment safeguards repressive chromatin domains.
    Lerra L; Panatta M; Bär D; Zanini I; Tan JY; Pisano A; Mungo C; Baroux C; Panse VG; Marques AC; Santoro R
    Mol Cell; 2024 May; 84(9):1667-1683.e10. PubMed ID: 38599210
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association of SARFH (sarcoma-associated RNA-binding fly homolog) with regions of chromatin transcribed by RNA polymerase II.
    Immanuel D; Zinszner H; Ron D
    Mol Cell Biol; 1995 Aug; 15(8):4562-71. PubMed ID: 7623847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 7SKiing on chromatin: Move globally, act locally.
    D'Orso I
    RNA Biol; 2016 Jun; 13(6):545-53. PubMed ID: 27128603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleus-wide analysis of coherent RNA pol II movement in the context of chromatin dynamics in living cancer cells.
    Shaban HA
    Nucleus; 2022 Dec; 13(1):313-318. PubMed ID: 36512483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient RNA polymerase II pause release requires U2 snRNP function.
    Caizzi L; Monteiro-Martins S; Schwalb B; Lysakovskaia K; Schmitzova J; Sawicka A; Chen Y; Lidschreiber M; Cramer P
    Mol Cell; 2021 May; 81(9):1920-1934.e9. PubMed ID: 33689748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoaffinity labeling of RNA polymerase III transcription complexes by nascent RNA.
    Bartholomew B; Meares CF; Dahmus ME
    J Biol Chem; 1990 Mar; 265(7):3731-7. PubMed ID: 2303478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dynamic actin-dependent nucleoskeleton and cell identity.
    Venit T; El Said NH; Mahmood SR; Percipalle P
    J Biochem; 2021 Apr; 169(3):243-257. PubMed ID: 33351909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa.
    Payne JM; Laybourn PJ; Dahmus ME
    J Biol Chem; 1989 Nov; 264(33):19621-9. PubMed ID: 2584185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA Pol II Dynamics Modulate Co-transcriptional Chromatin Modification, CTD Phosphorylation, and Transcriptional Direction.
    Fong N; Saldi T; Sheridan RM; Cortazar MA; Bentley DL
    Mol Cell; 2017 May; 66(4):546-557.e3. PubMed ID: 28506463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.