BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 23009852)

  • 1. Single-stranded DNA within nanopores: conformational dynamics and implications for sequencing; a molecular dynamics simulation study.
    Guy AT; Piggot TJ; Khalid S
    Biophys J; 2012 Sep; 103(5):1028-36. PubMed ID: 23009852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA.
    Jou I; Muthukumar M
    Biophys J; 2017 Oct; 113(8):1664-1672. PubMed ID: 29045861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore.
    Markosyan S; De Biase PM; Czapla L; Samoylova O; Singh G; Cuervo J; Tieleman DP; Noskov SY
    Nanoscale; 2014 Aug; 6(15):9006-16. PubMed ID: 24968858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric-Field-Driven Translocation of ssDNA through Hydrophobic Nanopores.
    Haynes T; Smith IPS; Wallace EJ; Trick JL; Sansom MSP; Khalid S
    ACS Nano; 2018 Aug; 12(8):8208-8213. PubMed ID: 29985578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of DNA within a nanopore: arginine-phosphate tethering and a binding/sliding mechanism for translocation.
    Bond PJ; Guy AT; Heron AJ; Bayley H; Khalid S
    Biochemistry; 2011 May; 50(18):3777-83. PubMed ID: 21428458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse-grained molecular dynamics simulation of DNA translocation in chemically modified nanopores.
    Ramachandran A; Guo Q; Iqbal SM; Liu Y
    J Phys Chem B; 2011 May; 115(19):6138-48. PubMed ID: 21526788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors.
    Zhou W; Qiu H; Guo Y; Guo W
    J Phys Chem B; 2020 Mar; 124(9):1611-1618. PubMed ID: 32027510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urea facilitates the translocation of single-stranded DNA and RNA through the alpha-hemolysin nanopore.
    Japrung D; Henricus M; Li Q; Maglia G; Bayley H
    Biophys J; 2010 May; 98(9):1856-63. PubMed ID: 20441749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base-by-base ratcheting of single stranded DNA through a solid-state nanopore.
    Luan B; Peng H; Polonsky S; Rossnagel S; Stolovitzky G; Martyna G
    Phys Rev Lett; 2010 Jun; 104(23):238103. PubMed ID: 20867275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores.
    Tyagi A; Chu K; Hossain MD; Abidi IH; Lin W; Yan Y; Zhang K; Luo Z
    Nanoscale; 2019 Dec; 11(48):23438-23448. PubMed ID: 31799536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.
    Belkin M; Maffeo C; Wells DB; Aksimentiev A
    ACS Nano; 2013 Aug; 7(8):6816-24. PubMed ID: 23876013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation of single-stranded DNA through the α-hemolysin protein nanopore in acidic solutions.
    de Zoysa RS; Krishantha DM; Zhao Q; Gupta J; Guan X
    Electrophoresis; 2011 Nov; 32(21):3034-41. PubMed ID: 21997574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling nanopores for sequencing DNA.
    Comer JR; Wells DB; Aksimentiev A
    Methods Mol Biol; 2011; 749():317-58. PubMed ID: 21674382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing an artificial photo-switch into a biological pore: A model study of an engineered α-hemolysin.
    Chandramouli B; Di Maio D; Mancini G; Brancato G
    Biochim Biophys Acta; 2016 Apr; 1858(4):689-97. PubMed ID: 26744229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurements of DNA immobilized in the alpha-hemolysin nanopore.
    Purnell R; Schmidt J
    Methods Mol Biol; 2012; 870():39-53. PubMed ID: 22528257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA.
    Belkin M; Chao SH; Jonsson MP; Dekker C; Aksimentiev A
    ACS Nano; 2015 Nov; 9(11):10598-611. PubMed ID: 26401685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore.
    Chu J; González-López M; Cockroft SL; Amorin M; Ghadiri MR
    Angew Chem Int Ed Engl; 2010 Dec; 49(52):10106-9. PubMed ID: 21105031
    [No Abstract]   [Full Text] [Related]  

  • 18. Unzipping of A-Form DNA-RNA, A-Form DNA-PNA, and B-Form DNA-DNA in the α-Hemolysin Nanopore.
    Perera RT; Fleming AM; Peterson AM; Heemstra JM; Burrows CJ; White HS
    Biophys J; 2016 Jan; 110(2):306-314. PubMed ID: 26789754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic Stepwise Translocation of Stretched ssDNA in Graphene Nanopores.
    Qiu H; Sarathy A; Leburton JP; Schulten K
    Nano Lett; 2015 Dec; 15(12):8322-30. PubMed ID: 26581231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free-energy calculations reveal the subtle differences in the interactions of DNA bases with α-hemolysin.
    Manara RM; Guy AT; Wallace EJ; Khalid S
    J Chem Theory Comput; 2015 Feb; 11(2):810-6. PubMed ID: 26579606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.