BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 23009852)

  • 21. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene.
    Shankla M; Aksimentiev A
    Nat Commun; 2014 Oct; 5():5171. PubMed ID: 25296960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications.
    Bonome EL; Cecconi F; Chinappi M
    Nanoscale; 2019 May; 11(20):9920-9930. PubMed ID: 31069350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D structural integrity and interactions of single-stranded protein-binding DNA in a functionalized nanopore.
    Mahmood MA; Ali W; Adnan A; Iqbal SM
    J Phys Chem B; 2014 Jun; 118(22):5799-806. PubMed ID: 24712502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational investigation of DNA detection using graphene nanopores.
    Sathe C; Zou X; Leburton JP; Schulten K
    ACS Nano; 2011 Nov; 5(11):8842-51. PubMed ID: 21981556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Individual RNA base recognition in immobilized oligonucleotides using a protein nanopore.
    Ayub M; Bayley H
    Nano Lett; 2012 Nov; 12(11):5637-43. PubMed ID: 23043363
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore.
    Stoddart D; Heron AJ; Mikhailova E; Maglia G; Bayley H
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7702-7. PubMed ID: 19380741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA Detection with Single-Layer Ti
    Yadav P; Cao Z; Barati Farimani A
    ACS Nano; 2021 Mar; 15(3):4861-4869. PubMed ID: 33660990
    [TBL] [Abstract][Full Text] [Related]  

  • 28. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore.
    Di Marino D; Bonome EL; Tramontano A; Chinappi M
    J Phys Chem Lett; 2015 Aug; 6(15):2963-8. PubMed ID: 26267189
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controllable and reversible DNA translocation through a single-layer molybdenum disulfide nanopore.
    Si W; Zhang Y; Sha J; Chen Y
    Nanoscale; 2018 Nov; 10(41):19450-19458. PubMed ID: 30311618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA in nanopores: counterion condensation and coion depletion.
    Rabin Y; Tanaka M
    Phys Rev Lett; 2005 Apr; 94(14):148103. PubMed ID: 15904117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. γ-Hemolysin Nanopore Is Sensitive to Guanine-to-Inosine Substitutions in Double-Stranded DNA at the Single-Molecule Level.
    Tan CS; Fleming AM; Ren H; Burrows CJ; White HS
    J Am Chem Soc; 2018 Oct; 140(43):14224-14234. PubMed ID: 30269492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanopore sequencing: from imagination to reality.
    Bayley H
    Clin Chem; 2015 Jan; 61(1):25-31. PubMed ID: 25477535
    [No Abstract]   [Full Text] [Related]  

  • 34. Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge.
    Maglia G; Restrepo MR; Mikhailova E; Bayley H
    Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19720-5. PubMed ID: 19060213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights into protein sequencing with an α-Hemolysin nanopore by atomistic simulations.
    Di Muccio G; Rossini AE; Di Marino D; Zollo G; Chinappi M
    Sci Rep; 2019 Apr; 9(1):6440. PubMed ID: 31015503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polynucleotide differentiation using hybrid solid-state nanopore functionalizing with α-hemolysin.
    Bentin J; Balme S; Picaud F
    Soft Matter; 2020 Jan; 16(4):1002-1010. PubMed ID: 31853534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical study of the transpore velocity control of single-stranded DNA.
    Qian W; Doi K; Uehara S; Morita K; Kawano S
    Int J Mol Sci; 2014 Aug; 15(8):13817-32. PubMed ID: 25116683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water Mediates Recognition of DNA Sequence via Ionic Current Blockade in a Biological Nanopore.
    Bhattacharya S; Yoo J; Aksimentiev A
    ACS Nano; 2016 Apr; 10(4):4644-51. PubMed ID: 27054820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unfoldase-mediated protein translocation through an α-hemolysin nanopore.
    Nivala J; Marks DB; Akeson M
    Nat Biotechnol; 2013 Mar; 31(3):247-50. PubMed ID: 23376966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical Trapping of DNA in a Double-Nanopore System.
    Pud S; Chao SH; Belkin M; Verschueren D; Huijben T; van Engelenburg C; Dekker C; Aksimentiev A
    Nano Lett; 2016 Dec; 16(12):8021-8028. PubMed ID: 27960493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.