These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23010052)

  • 1. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs.
    Mehta SK; Jindal N
    Colloids Surf B Biointerfaces; 2013 Jan; 101():434-41. PubMed ID: 23010052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative investigation, stability and in vitro release studies of anti-TB drugs in Triton niosomes.
    Mehta SK; Jindal N; Kaur G
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):173-9. PubMed ID: 21640561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed micelles of Lecithin-Tyloxapol as pharmaceutical nanocarriers for anti-tubercular drug delivery.
    Mehta SK; Jindal N
    Colloids Surf B Biointerfaces; 2013 Oct; 110():419-25. PubMed ID: 23751420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization.
    Kaur G; Mehta SK; Kumar S; Bhanjana G; Dilbaghi N
    J Pharm Sci; 2015 Jul; 104(7):2203-12. PubMed ID: 25951802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tween-embedded microemulsions--physicochemical and spectroscopic analysis for antitubercular drugs.
    Mehta SK; Kaur G; Bhasin KK
    AAPS PharmSciTech; 2010 Mar; 11(1):143-53. PubMed ID: 20087697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entrapment of multiple anti-Tb drugs in microemulsion system: quantitative analysis, stability, and in vitro release studies.
    Mehta SK; Kaur G; Bhasin KK
    J Pharm Sci; 2010 Apr; 99(4):1896-911. PubMed ID: 19894276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation and statistical optimization of a novel crosslinked polymeric anti-tuberculosis drug delivery system.
    du Toit LC; Pillay V; Danckwerts MP; Penny C
    J Pharm Sci; 2008 Jun; 97(6):2176-207. PubMed ID: 17879985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing location of anti-TB drugs loaded in Brij 96 microemulsions using thermoanalytical and photophysical approach.
    Kaur G; Mehta SK
    J Pharm Sci; 2014 Mar; 103(3):937-44. PubMed ID: 24425102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmaceutical formulation of a fixed-dose anti-tuberculosis combination.
    Danckwerts MP; Ebrahim S; Pillay V
    Int J Tuberc Lung Dis; 2003 Mar; 7(3):289-97. PubMed ID: 12661846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with Isoniazid at acidic pH.
    Singh H; Bhandari R; Kaur IP
    Int J Pharm; 2013 Mar; 446(1-2):106-11. PubMed ID: 23410991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mesoporous silicon/poly-(DL-lactic-co-glycolic) acid microsphere for long time anti-tuberculosis drug delivery.
    Xu W; Wei X; Wei K; Cao X; Zhong S
    Int J Pharm; 2014 Dec; 476(1-2):116-23. PubMed ID: 25271077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-encapsulation of isoniazid and rifampicin in liposomes and characterization of liposomes by derivative spectroscopy.
    Gürsoy A; Kut E; Ozkirimli S
    Int J Pharm; 2004 Mar; 271(1-2):115-23. PubMed ID: 15129978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Niosomal encapsulation of the antitubercular drug, pyrazinamide.
    El-Ridy MS; Abdelbary A; Nasr EA; Khalil RM; Mostafa DM; El-Batal AI; Abd El-Alim SH
    Drug Dev Ind Pharm; 2011 Sep; 37(9):1110-8. PubMed ID: 21417612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Stability of Tuberculosis Drug Fixed-Dose Combination Using Isoniazid-Caffeic Acid and Vanillic Acid Cocrystal.
    Battini S; Mannava MKC; Nangia A
    J Pharm Sci; 2018 Jun; 107(6):1667-1679. PubMed ID: 29462633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses.
    Ahmad Z; Pandey R; Sharma S; Khuller GK
    Int J Antimicrob Agents; 2006 May; 27(5):409-16. PubMed ID: 16624533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoniazid loaded core shell nanoparticles derived from PLGA-PEG-PLGA tri-block copolymers: in vitro and in vivo drug release.
    Gajendiran M; Gopi V; Elangovan V; Murali RV; Balasubramanian S
    Colloids Surf B Biointerfaces; 2013 Apr; 104():107-15. PubMed ID: 23298594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oral matrix tablet formulations for concomitant controlled release of anti-tubercular drugs: design and in vitro evaluations.
    Hiremath PS; Saha RN
    Int J Pharm; 2008 Oct; 362(1-2):118-25. PubMed ID: 18640251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined Atomistic Molecular Calculations and Experimental Investigations for the Architecture, Screening, Optimization, and Characterization of Pyrazinamide Containing Oral Film Formulations for Tuberculosis Management.
    Adeleke OA; Monama NO; Tsai PC; Sithole HM; Michniak-Kohn BB
    Mol Pharm; 2016 Feb; 13(2):456-71. PubMed ID: 26650101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Location of anti-TB drugs and microstructural changes in organized surfactant media using optical properties.
    Mehta SK; Kaur G
    J Colloid Interface Sci; 2011 Apr; 356(2):589-97. PubMed ID: 21292277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution testing of marketed rifampicin containing fixed dose combination formulations using a new discriminative media: a post marketing retrospective study.
    Panchagnula R; Kumar Bajpai A; Agrawal S; Ashokraj Y
    Pharmazie; 2006 Oct; 61(10):851-4. PubMed ID: 17069424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.