These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23010208)

  • 1. Thermodynamic analysis of a high-yield biochemical process for biofuel production.
    Sohel MI; Jack MW
    Bioresour Technol; 2012 Nov; 124():406-12. PubMed ID: 23010208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: guiding technology selection and research focus.
    Sohel MI; Jack MW
    Bioresour Technol; 2011 Feb; 102(3):2617-22. PubMed ID: 21036607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic prediction of hydrogen production from mixed-acid fermentations.
    Forrest AK; Wales ME; Holtzapple MT
    Bioresour Technol; 2011 Oct; 102(20):9823-6. PubMed ID: 21875794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges.
    Munasinghe PC; Khanal SK
    Bioresour Technol; 2010 Jul; 101(13):5013-22. PubMed ID: 20096574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.
    Teh KY; Lutz AE
    J Biotechnol; 2010 May; 147(2):80-7. PubMed ID: 20184925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass.
    Xia A; Cheng J; Lin R; Lu H; Zhou J; Cen K
    Bioresour Technol; 2013 Jun; 138():204-13. PubMed ID: 23612181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the second law of thermodynamics for enrichment and isolation of microorganisms to produce fuel alcohols or hydrocarbons.
    Kohn RA; Kim SW
    J Theor Biol; 2015 Oct; 382():356-62. PubMed ID: 26231417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.
    Zhu JY; Pan XJ
    Bioresour Technol; 2010 Jul; 101(13):4992-5002. PubMed ID: 19969450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.
    Sun ZY; Tang YQ; Iwanaga T; Sho T; Kida K
    Bioresour Technol; 2011 Dec; 102(23):10929-35. PubMed ID: 21974887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.
    Luo D; Hu Z; Choi DG; Thomas VM; Realff MJ; Chance RR
    Environ Sci Technol; 2010 Nov; 44(22):8670-7. PubMed ID: 20968295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw.
    Dererie DY; Trobro S; Momeni MH; Hansson H; Blomqvist J; Passoth V; Schnürer A; Sandgren M; Ståhlberg J
    Bioresour Technol; 2011 Mar; 102(6):4449-55. PubMed ID: 21256738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.
    Chu Q; Li X; Ma B; Xu Y; Ouyang J; Zhu J; Yu S; Yong Q
    Bioresour Technol; 2012 Nov; 123():699-702. PubMed ID: 22975252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of net energy production and feedstock availability for biobutanol and bioethanol.
    Swana J; Yang Y; Behnam M; Thompson R
    Bioresour Technol; 2011 Jan; 102(2):2112-7. PubMed ID: 20843683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supercritical water gasification of biomass: Thermodynamic constraints.
    Castello D; Fiori L
    Bioresour Technol; 2011 Aug; 102(16):7574-82. PubMed ID: 21640582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production.
    Kataria R; Ghosh S
    Bioresour Technol; 2011 Nov; 102(21):9970-5. PubMed ID: 21907576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The challenge of enzyme cost in the production of lignocellulosic biofuels.
    Klein-Marcuschamer D; Oleskowicz-Popiel P; Simmons BA; Blanch HW
    Biotechnol Bioeng; 2012 Apr; 109(4):1083-7. PubMed ID: 22095526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance.
    Zhu JY; Pan X; Zalesny RS
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):847-57. PubMed ID: 20473606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing Sugar Content in Source for Biofuel Production Using Agrochemical and Genetic Approaches at the Stages of BioMass Preharvesting and Harvesting.
    Zolotareva D; Zazybin A; Belyankova Y; Dauletbakov A; Tursynbek S; Rafikova K; Ten A; Yu V; Bayazit S; Basharimova A; Aydemir M
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production.
    Sindhu R; Kuttiraja M; Binod P; Janu KU; Sukumaran RK; Pandey A
    Bioresour Technol; 2011 Dec; 102(23):10915-21. PubMed ID: 22000965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.