These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23010214)

  • 1. An integrated approach for Cr(VI)-detoxification with polyaniline/cellulose fiber composite prepared using hydrogen peroxide as oxidant.
    Liu X; Qian X; Shen J; Zhou W; An X
    Bioresour Technol; 2012 Nov; 124():516-9. PubMed ID: 23010214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyaniline/cellulose fiber composite prepared using persulfate as oxidant for Cr(VI)-detoxification.
    Liu X; Zhou W; Qian X; Shen J; An X
    Carbohydr Polym; 2013 Jan; 92(1):659-61. PubMed ID: 23218350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A process of applying polypyrrole-engineered pulp fibers prepared using hydrogen peroxide as oxidant to detoxification of Cr(VI)-contaminated water.
    Lei Y; Qian X; Shen J; An X
    Bioresour Technol; 2013 Mar; 131():134-8. PubMed ID: 23340110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of polyaniline for the reduction of toxic Cr(VI) in water.
    Olad A; Nabavi R
    J Hazard Mater; 2007 Aug; 147(3):845-51. PubMed ID: 17329022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization.
    Wu X; Qian X; An X
    Carbohydr Polym; 2013 Jan; 92(1):435-40. PubMed ID: 23218317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive microbial cellulose as a novel biocathode for Cr (VI) bioreduction.
    Loloei M; Rezaee A; Roohaghdam AS; Aliofkhazraei M
    Carbohydr Polym; 2017 Apr; 162():56-61. PubMed ID: 28224895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline.
    Hu W; Chen S; Yang Z; Liu L; Wang H
    J Phys Chem B; 2011 Jul; 115(26):8453-7. PubMed ID: 21671578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline.
    Park M; Cheng J; Choi J; Kim J; Hyun J
    Colloids Surf B Biointerfaces; 2013 Feb; 102():238-42. PubMed ID: 23000681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymerization of aniline on polyaniline membranes.
    Blinova NV; Stejskal J; Trchová M; Cirić-Marjanović G; Sapurina I
    J Phys Chem B; 2007 Mar; 111(10):2440-8. PubMed ID: 17311453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ doping enables the multifunctionalization of templately synthesized polyaniline@cellulose nanocomposites.
    Zhou Z; Yang Y; Han Y; Guo Q; Zhang X; Lu C
    Carbohydr Polym; 2017 Dec; 177():241-248. PubMed ID: 28962765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pt nanoflower/polyaniline composite nanofibers based urea biosensor.
    Jia W; Su L; Lei Y
    Biosens Bioelectron; 2011 Dec; 30(1):158-64. PubMed ID: 21986562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution.
    Taha AA; Wu YN; Wang H; Li F
    J Environ Manage; 2012 Dec; 112():10-6. PubMed ID: 22858801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductive cotton prepared by polyaniline in situ polymerization using laccase.
    Zhang Y; Dong A; Wang Q; Fan X; Cavaco-Paulo A; Zhang Y
    Appl Biochem Biotechnol; 2014 Sep; 174(2):820-31. PubMed ID: 25099374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface and charge transport characterization of polyaniline-cellulose acetate composite membranes.
    Qaiser AA; Hyland MM; Patterson DA
    J Phys Chem B; 2011 Feb; 115(7):1652-61. PubMed ID: 21287993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligomer-assisted synthesis of chiral polyaniline nanofibers.
    Li W; Wang HL
    J Am Chem Soc; 2004 Mar; 126(8):2278-9. PubMed ID: 14982411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants.
    Bokare AD; Choi W
    Environ Sci Technol; 2010 Oct; 44(19):7232-7. PubMed ID: 20408538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity.
    Gu H; Guo J; He Q; Jiang Y; Huang Y; Haldolaarachige N; Luo Z; Young DP; Wei S; Guo Z
    Nanoscale; 2014 Jan; 6(1):181-9. PubMed ID: 24226933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds.
    Zhang S; Zhao X; Niu H; Shi Y; Cai Y; Jiang G
    J Hazard Mater; 2009 Aug; 167(1-3):560-6. PubMed ID: 19201085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of chemical surface treatments of quartz and glass fiber posts on the retention of a composite resin.
    Yenisey M; Kulunk S
    J Prosthet Dent; 2008 Jan; 99(1):38-45. PubMed ID: 18182184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the enzymatic digestibility of sugarcane bagasse by steam pretreatment impregnated with hydrogen peroxide.
    Rabelo SC; Vaz Rossell CE; de Moraes Rocha GJ; Zacchi G
    Biotechnol Prog; 2012; 28(5):1207-17. PubMed ID: 22753357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.