BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23010249)

  • 1. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography.
    Pfaunmiller EL; Hartmann M; Dupper CM; Soman S; Hage DS
    J Chromatogr A; 2012 Dec; 1269():198-207. PubMed ID: 23010249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance affinity monolith chromatography: development and evaluation of human serum albumin columns.
    Mallik R; Jiang T; Hage DS
    Anal Chem; 2004 Dec; 76(23):7013-22. PubMed ID: 15571354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an affinity silica monolith containing human serum albumin for chiral separations.
    Mallik R; Hage DS
    J Pharm Biomed Anal; 2008 Apr; 46(5):820-30. PubMed ID: 17475436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot preparation of a novel monolith for high performance liquid chromatography applications.
    Jiao X; Shen S; Shi T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Dec; 1007():100-9. PubMed ID: 26590881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an affinity silica monolith containing alpha1-acid glycoprotein for chiral separations.
    Mallik R; Xuan H; Hage DS
    J Chromatogr A; 2007 May; 1149(2):294-304. PubMed ID: 17408678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of protein entrapment in affinity microcolumns using hydrazide-activated silica and glycogen as a capping agent.
    Vargas-Badilla J; Poddar S; Azaria S; Zhang C; Hage DS
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jul; 1121():1-8. PubMed ID: 31079009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of trypsin onto porous methacrylate-based monolith for flow-through protein digestion and its potential application to chiral separation using liquid chromatography.
    Amalia S; Angga SC; Iftitah ED; Septiana D; Anggraeny BOD; Warsito ; Hasanah AN; Sabarudin A
    Heliyon; 2021 Aug; 7(8):e07707. PubMed ID: 34401587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance affinity monolith chromatography for chiral separation and determination of enzyme kinetic constants.
    Yao C; Qi L; Qiao J; Zhang H; Wang F; Chen Y; Yang G
    Talanta; 2010 Sep; 82(4):1332-7. PubMed ID: 20801337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of tryptophan-modified human serum albumin columns for site-specific studies of drug-protein interactions by high-performance affinity chromatography.
    Chattopadhyay A; Tian T; Kortum L; Hage DS
    J Chromatogr B Biomed Sci Appl; 1998 Sep; 715(1):183-90. PubMed ID: 9792509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective nano liquid chromatographic separation of racemic pharmaceuticals: a facile one-pot in situ preparation of lipase-based polymer monoliths in capillary format.
    Ahmed M; Ghanem A
    Chirality; 2014 Nov; 26(11):754-63. PubMed ID: 24604679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of silica monoliths in affinity microcolumns for high-throughput analysis of drug-protein interactions.
    Yoo MJ; Hage DS
    J Sep Sci; 2009 Aug; 32(15-16):2776-85. PubMed ID: 19630007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of peak decay analysis and affinity microcolumns containing silica monoliths for rapid determination of drug-protein dissociation rates.
    Yoo MJ; Hage DS
    J Chromatogr A; 2011 Apr; 1218(15):2072-8. PubMed ID: 20956006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of enhanced capacity affinity microcolumns by using a hybrid of protein cross-linking/modification and immobilization.
    Zheng X; Podariu M; Bi C; Hage DS
    J Chromatogr A; 2015 Jun; 1400():82-90. PubMed ID: 25981291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity chromatography with monolithic capillary columns I. Polymethacrylate monoliths with immobilized mannan for the separation of mannose-binding proteins by capillary electrochromatography and nano-scale liquid chromatography.
    Bedair M; El Rassi Z
    J Chromatogr A; 2004 Jul; 1044(1-2):177-86. PubMed ID: 15354437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative evaluation of a one-pot strategy for the preparation of β-cyclodextrin-functionalized monoliths: Effect of the degree of amino substitution of β-cyclodextrin on the column performance.
    Zhang Q; Guo J; Xiao Y; Crommen J; Jiang Z
    J Sep Sci; 2015 Jun; 38(11):1813-21. PubMed ID: 25763541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation and optimization of polymer-based monolithic stationary phase for high performance liquid chromatography].
    Wei Y; Zou J; Yang C; Zhang Q; Zhang W; Wang F; Li T
    Se Pu; 2005 May; 23(3):251-4. PubMed ID: 16124566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths.
    Guo J; Xiao Y; Lin Y; Zhang Q; Chang Y; Crommen J; Jiang Z
    Talanta; 2016 May; 152():259-68. PubMed ID: 26992519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinity Monolith-Integrated Microchips for Protein Purification and Concentration.
    Gao C; Sun X; Wang H; Qiao W; Hu B
    Methods Mol Biol; 2016; 1466():85-92. PubMed ID: 27473483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer monoliths with silver nanoparticles-cholesterol conjugate as stationary phases for capillary liquid chromatography.
    Grzywiński D; Szumski M; Buszewski B
    J Chromatogr A; 2017 Dec; 1526():93-103. PubMed ID: 29056273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity monoliths for ultrafast immunoextraction.
    Jiang T; Mallik R; Hage DS
    Anal Chem; 2005 Apr; 77(8):2362-72. PubMed ID: 15828768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.