These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23010447)

  • 1. Complement and atherosclerosis-united to the point of no return?
    Torzewski M; Bhakdi S
    Clin Biochem; 2013 Jan; 46(1-2):20-5. PubMed ID: 23010447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Immunopathogenesis of atherosclerosis: the Mainz hypothesis].
    Bhakdi S
    Med Monatsschr Pharm; 2006 Oct; 29(10):356-9. PubMed ID: 17058894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond cholesterol: the enigma of atherosclerosis revisited.
    Bhakdi S; Lackner KJ; Han SR; Torzewski M; Husmann M
    Thromb Haemost; 2004 Apr; 91(4):639-45. PubMed ID: 15045123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Initial Human Atherosclerotic Lesion and Lipoprotein Modification-A Deep Connection.
    Torzewski M
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initiation and progression of atherosclerosis--enzymatic or oxidative modification of low-density lipoprotein?
    Torzewski M; Lackner KJ
    Clin Chem Lab Med; 2006; 44(12):1389-94. PubMed ID: 17163812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of C-reactive protein with low-density lipoproteins: implications for an active role of modified C-reactive protein in atherosclerosis.
    Ji SR; Wu Y; Potempa LA; Qiu Q; Zhao J
    Int J Biochem Cell Biol; 2006; 38(4):648-61. PubMed ID: 16376133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Front line of oxidized lipoproteins: role of oxidized lipoproteins in atherogenesis and cardiovascular disease risk].
    Yoshida H
    Rinsho Byori; 2010 Jun; 58(6):622-30. PubMed ID: 20662275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidized low-density lipoprotein: a double-edged sword on atherosclerosis.
    Yu BL; Zhao SP; Huang XS
    Med Hypotheses; 2007; 69(3):553-6. PubMed ID: 17368957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipoprotein modification and macrophage uptake: role of pathologic cholesterol transport in atherogenesis.
    Miller YI; Choi SH; Fang L; Tsimikas S
    Subcell Biochem; 2010; 51():229-51. PubMed ID: 20213546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complement and atherogenesis: the unknown connection.
    Bhakdi S
    Ann Med; 1998 Dec; 30(6):503-7. PubMed ID: 9920350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoimmunity in atherosclerosis: a protective response losing control?
    Nilsson J; Hansson GK
    J Intern Med; 2008 May; 263(5):464-78. PubMed ID: 18410590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatically modified LDL, atherosclerosis and beyond: paving the way to acceptance.
    Torzewski M
    Front Biosci (Landmark Ed); 2018 Jan; 23(7):1257-1271. PubMed ID: 28930598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatically Modified Low-Density Lipoprotein Is Present in All Stages of Aortic Valve Sclerosis: Implications for Pathogenesis of the Disease.
    Twardowski L; Cheng F; Michaelsen J; Winter S; Hofmann U; Schaeffeler E; Müller S; Sonnenberg M; Steuer K; Ott G; Schwab M; Franke UF; Torzewski M
    J Am Heart Assoc; 2015 Oct; 4(10):e002156. PubMed ID: 26475297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis.
    Matsuura E; Kobayashi K; Tabuchi M; Lopez LR
    Prog Lipid Res; 2006 Nov; 45(6):466-86. PubMed ID: 16790279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidized LDL-induced endolysosomal phospholipidosis and enzymatically modified LDL-induced foam cell formation determine specific lipid species modulation in human macrophages.
    Orsó E; Grandl M; Schmitz G
    Chem Phys Lipids; 2011 Sep; 164(6):479-87. PubMed ID: 21683693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β2-glycoprotein I and oxidative inflammation in early atherogenesis: a progression from innate to adaptive immunity?
    Matsuura E; Lopez LR; Shoenfeld Y; Ames PR
    Autoimmun Rev; 2012 Dec; 12(2):241-9. PubMed ID: 22569463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of inflammation in atherogenesis].
    Rodríguez G; Mago N; Rosa F
    Invest Clin; 2009 Mar; 50(1):109-29. PubMed ID: 19418732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy.
    McLaren JE; Michael DR; Ashlin TG; Ramji DP
    Prog Lipid Res; 2011 Oct; 50(4):331-47. PubMed ID: 21601592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential protective role of apoprotein J (clusterin) in atherogenesis: binding to enzymatically modified low-density lipoprotein reduces fatty acid-mediated cytotoxicity.
    Schwarz M; Spath L; Lux CA; Paprotka K; Torzewski M; Dersch K; Koch-Brandt C; Husmann M; Bhakdi S
    Thromb Haemost; 2008 Jul; 100(1):110-8. PubMed ID: 18612545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic modification of low-density lipoprotein in the arterial wall: a new role for plasmin and matrix metalloproteinases in atherogenesis.
    Torzewski M; Suriyaphol P; Paprotka K; Spath L; Ochsenhirt V; Schmitt A; Han SR; Husmann M; Gerl VB; Bhakdi S; Lackner KJ
    Arterioscler Thromb Vasc Biol; 2004 Nov; 24(11):2130-6. PubMed ID: 15345515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.