BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23010590)

  • 1. Structural insight into the interaction of ADP-ribose with the PARP WWE domains.
    He F; Tsuda K; Takahashi M; Kuwasako K; Terada T; Shirouzu M; Watanabe S; Kigawa T; Kobayashi N; Güntert P; Yokoyama S; Muto Y
    FEBS Lett; 2012 Nov; 586(21):3858-64. PubMed ID: 23010590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination.
    Wang Z; Michaud GA; Cheng Z; Zhang Y; Hinds TR; Fan E; Cong F; Xu W
    Genes Dev; 2012 Feb; 26(3):235-40. PubMed ID: 22267412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and Biophysical Assays of PAR-WWE Domain Interactions and Production of iso-ADPr for PAR-Binding Analysis.
    Wang Z; Xu W
    Methods Mol Biol; 2018; 1813():65-73. PubMed ID: 30097861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation.
    Aravind L
    Trends Biochem Sci; 2001 May; 26(5):273-5. PubMed ID: 11343911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal.
    DaRosa PA; Wang Z; Jiang X; Pruneda JN; Cong F; Klevit RE; Xu W
    Nature; 2015 Jan; 517(7533):223-6. PubMed ID: 25327252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The macro domain is an ADP-ribose binding module.
    Karras GI; Kustatscher G; Buhecha HR; Allen MD; Pugieux C; Sait F; Bycroft M; Ladurner AG
    EMBO J; 2005 Jun; 24(11):1911-20. PubMed ID: 15902274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative site-specific ADP-ribosylation profiling of DNA-dependent PARPs.
    Gagné JP; Ethier C; Defoy D; Bourassa S; Langelier MF; Riccio AA; Pascal JM; Moon KM; Foster LJ; Ning Z; Figeys D; Droit A; Poirier GG
    DNA Repair (Amst); 2015 Jun; 30():68-79. PubMed ID: 25800440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ADP-ribosylation) and genomic stability.
    Oei SL; Keil C; Ziegler M
    Biochem Cell Biol; 2005 Jun; 83(3):263-9. PubMed ID: 15959554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iso-ADP-Ribose Fluorescence Polarization Probe for the Screening of RNF146 WWE Domain Inhibitors.
    Peng K; Anmangandla A; Jana S; Jin Y; Lin H
    ACS Chem Biol; 2024 Feb; 19(2):300-307. PubMed ID: 38237916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif.
    Tao Z; Gao P; Hoffman DW; Liu HW
    Biochemistry; 2008 May; 47(21):5804-13. PubMed ID: 18452307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, Function and Inhibition of Poly(ADP-ribose)polymerase, Member 14 (PARP14).
    Schweiker SS; Tauber AL; Sherry ME; Levonis SM
    Mini Rev Med Chem; 2018; 18(19):1659-1669. PubMed ID: 30112992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: analysis and implications.
    Tao Z; Gao P; Liu HW
    J Am Chem Soc; 2009 Oct; 131(40):14258-60. PubMed ID: 19764761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase.
    Mendoza-Alvarez H; Alvarez-Gonzalez R
    Biochemistry; 1999 Mar; 38(13):3948-53. PubMed ID: 10194306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural recognition of DNA by poly(ADP-ribose)polymerase-like zinc finger families.
    Petrucco S; Percudani R
    FEBS J; 2008 Mar; 275(5):883-93. PubMed ID: 18215166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin architecture and functions: the role(s) of poly(ADP-RIBOSE) polymerase and poly(ADPribosyl)ation of nuclear proteins.
    Faraone-Mennella MR
    Biochem Cell Biol; 2005 Jun; 83(3):396-404. PubMed ID: 15959565
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Kam CM; Tauber AL; Oosthuizen DL; Levonis SM; Schweiker SS
    Future Med Chem; 2020 Dec; 12(23):2105-2122. PubMed ID: 33225737
    [No Abstract]   [Full Text] [Related]  

  • 17. Structural and functional analysis of
    Zapata-Pérez R; Gil-Ortiz F; Martínez-Moñino AB; García-Saura AG; Juanhuix J; Sánchez-Ferrer Á
    Open Biol; 2017 Apr; 7(4):. PubMed ID: 28446708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase.
    Gagné JP; Moreel X; Gagné P; Labelle Y; Droit A; Chevalier-Paré M; Bourassa S; McDonald D; Hendzel MJ; Prigent C; Poirier GG
    J Proteome Res; 2009 Feb; 8(2):1014-29. PubMed ID: 19105632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of the WWE domain of RNF146 modulates poly-(ADP)-ribose dynamics at sites of DNA damage.
    Al-Rahahleh RQ; Saville KM; Andrews JF; Wu Z; Koczor CA; Sobol RW
    bioRxiv; 2023 Dec; ():. PubMed ID: 38234836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding Adaptation of GS-441524 Diversifies Macro Domains and Downregulates SARS-CoV-2 de-MARylation Capacity.
    Tsika AC; Gallo A; Fourkiotis NK; Argyriou AI; Sreeramulu S; Löhr F; Rogov VV; Richter C; Linhard V; Gande SL; Altincekic N; Krishnathas R; Elamri I; Schwalbe H; Wollenhaupt J; Weiss MS; Spyroulias GA
    J Mol Biol; 2022 Aug; 434(16):167720. PubMed ID: 35839840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.