These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23010955)

  • 41. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.
    Wingo JE; Low DA; Keller DM; Brothers RM; Shibasaki M; Crandall CG
    J Appl Physiol (1985); 2010 Nov; 109(5):1301-6. PubMed ID: 20705945
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spectral changes in skin blood flow during pressure manipulations or sympathetic stimulation.
    Lima NS; Tzen YT; Clifford PS
    Exp Physiol; 2024 Jun; 109(6):892-898. PubMed ID: 38642069
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparison of the cutaneous microvascular properties of the Spontaneously Hypertensive and the Wistar-Kyoto rats by Spectral analysis of Laser Doppler.
    Yuan X; Wu Q; Shang F; Li B; Liu M; Wang B; Sheng Y; Zhang H; Xiu R
    Clin Exp Hypertens; 2019; 41(4):342-352. PubMed ID: 29939761
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise.
    Kvernmo HD; Stefanovska A; Bracic M; Kirkebøen KA; Kvernebo K
    Microvasc Res; 1998 Nov; 56(3):173-82. PubMed ID: 9828155
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temperature effects on surface pressure-induced changes in rat skin perfusion: implications in pressure ulcer development.
    Patel S; Knapp CF; Donofrio JC; Salcido R
    J Rehabil Res Dev; 1999 Jul; 36(3):189-201. PubMed ID: 10659802
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals.
    Caldwell JN; van den Heuvel AMJ; Kerry P; Clark MJ; Peoples GE; Taylor NAS
    Exp Physiol; 2018 Apr; 103(4):512-522. PubMed ID: 29345019
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of temperature on blood circulation measured with the laser Doppler method.
    Song CW; Chelstrom LM; Levitt SH; Haumschild DJ
    Int J Radiat Oncol Biol Phys; 1989 Nov; 17(5):1041-7. PubMed ID: 2808037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tissue oxygenation and skin blood flow in the diabetic foot: responses to cutaneous warming.
    Boyko EJ; Ahroni JH; Stensel VL
    Foot Ankle Int; 2001 Sep; 22(9):711-4. PubMed ID: 11587386
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantifying the correlation between photoplethysmography and laser Doppler flowmetry microvascular low-frequency oscillations.
    Mizeva I; Di Maria C; Frick P; Podtaev S; Allen J
    J Biomed Opt; 2015 Mar; 20(3):037007. PubMed ID: 25764202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The reliability of cutaneous low-frequency oscillations in young healthy males.
    Hodges GJ; Mallette MM; Cheung SS
    Microcirculation; 2019 Aug; 26(6):e12546. PubMed ID: 30932285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Skin temperature changes and changes in skin blood flow monitored with laser Doppler flowmetry and imaging: a methodological study in normal humans.
    Bornmyr S; Svensson H; Lilja B; Sundkvist G
    Clin Physiol; 1997 Jan; 17(1):71-81. PubMed ID: 9015659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of alpha2C-adrenoceptors in the reduction of skin blood flow induced by local cooling in mice.
    Honda M; Suzuki M; Nakayama K; Ishikawa T
    Br J Pharmacol; 2007 Sep; 152(1):91-100. PubMed ID: 17618305
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of general anesthesia on human skin microcirculation evaluated by wavelet transform.
    Landsverk SA; Kvandal P; Bernjak A; Stefanovska A; Kirkeboen KA
    Anesth Analg; 2007 Oct; 105(4):1012-9, table of contents. PubMed ID: 17898381
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the suitability of laser-Doppler flowmetry for capturing microvascular blood flow dynamics from darkly pigmented skin.
    Abdulhameed YA; Lancaster G; McClintock PVE; Stefanovska A
    Physiol Meas; 2019 Aug; 40(7):074005. PubMed ID: 31158825
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of skin blood flow in pre- and full-term infants.
    Beinder E; Trojan A; Bucher HU; Huch A; Huch R
    Biol Neonate; 1994; 65(1):7-15. PubMed ID: 8117847
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Minimizing the duration of laser Doppler flowmetry recordings while maintaining wavelet analysis quality: A methodological study.
    Reynès C; Vinet A; Maltinti O; Knapp Y
    Microvasc Res; 2020 Sep; 131():104034. PubMed ID: 32589891
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects on skin blood flow by provocation during local analgesia.
    Arildsson M; Nilsson GE; Strömberg T
    Microvasc Res; 2000 Jan; 59(1):122-30. PubMed ID: 10625579
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of week-to-week variability in skin blood flow measurements using wavelet transforms.
    Jan YK; Brienza DM; Geyer MJ
    Clin Physiol Funct Imaging; 2005 Sep; 25(5):253-62. PubMed ID: 16117727
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detection of Endothelial Dysfunction Using Skin Temperature Oscillations Analysis During Local Heating in Patients With Peripheral Arterial Disease.
    Parshakov A; Zubareva N; Podtaev S; Frick P
    Microcirculation; 2016 Aug; 23(6):406-15. PubMed ID: 27177504
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The acute impact of local cooling versus local heating on human skin microcirculation using laser Doppler flowmetry and tissue spectrophotometry.
    Bender D; Tweer S; Werdin F; Rothenberger J; Daigeler A; Held M
    Burns; 2020 Feb; 46(1):104-109. PubMed ID: 31859085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.